This repository has been archived by the owner on Jan 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 923
/
Copy pathPrepareGaussian.qs
206 lines (187 loc) · 6.79 KB
/
PrepareGaussian.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
namespace Microsoft.Quantum.Samples.GaussianPreparation {
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Math;
open Microsoft.Quantum.Arrays;
open Microsoft.Quantum.Arithmetic;
//////////////////////////////////////////////////////////////////////////
// Introduction //////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// This program prepares a quantum state that encodes a Gaussian function using
// probability amplitudes, given the standard deviation, mean, and number of
// qubits.
//////////////////////////////////////////////////////////////////////////
// Gaussian initial state ////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
/// # Summary
/// Computes a single term in the normalization factor.
/// # Input
/// ## sigma
/// Standard deviation.
/// ## mu
/// Mean.
/// ## N
/// The term in the normalization factor.
function NormTerm(sigma : Double, mu : Double, N : Int) : Double {
let n = IntAsDouble(N);
return ExpD(-((n - mu) ^ 2.) / sigma ^ 2.);
}
/// # Summary
/// Computes the normalization factor.
/// # Input
/// ## sigma
/// Standard deviation.
/// ## mu
/// Mean.
/// ## N
/// The limit of the sum in the normalization factor.
function Norm(sigma : Double, mu : Double, N : Int) : Double {
mutable sum = 0.;
for n in -N..N {
set sum += NormTerm(sigma, mu, n);
}
return sum;
}
/// # Summary
/// Computes the rotation angle.
/// # Input
/// ## sigma
/// Standard deviation.
/// ## mu
/// Mean.
/// ## N
/// The limit of the sum in the normalization factor.
function Angle(sigma: Double, mu: Double, N : Int) : Double {
return ArcCos(Sqrt(Norm(sigma / 2., mu / 2., N) / Norm(sigma, mu, N)));
}
/// # Summary
/// Return a list of n-bit strings.
/// # Input
/// ## nQubits
/// The number of bits.
function QubitStrings(nQubits : Int) : Bool[][] {
return MappedOverRange(IntAsBoolArray(_, nQubits), 0..PowI(2, nQubits) - 1);
}
/// # Summary
/// Given an n-bit string, return the corresponding mean for the rotation angle
/// at recursion level n.
///
/// # Input
/// ## qub
/// The n-bit string.
/// ## mu
/// Mean.
function MeanQubitCombo(qub : Bool[], mu : Double) : Double {
mutable muOut = mu;
for bit in qub {
set muOut += muOut / 2. - (bit ? 0. | -0.5);
}
return muOut;
}
/// # Summary
/// At recursion level n, return a list of all the means used for the various rotation angles.
///
/// # Input
/// ## mu
/// Mean.
/// ## n
/// Recursion level.
function LevelMeans(mu : Double, n : Int) : Double[] {
let qbStrings = QubitStrings(n);
return Mapped(MeanQubitCombo(_, mu), qbStrings);
}
/// # Summary
/// At recursion level n, return a list of all the rotation angles.
/// # Input
/// ## sigma
/// Standard deviation
/// ## mu
/// Mean.
/// ## n
/// Recursion level.
function LevelAngles(sigma : Double, mu : Double, n : Int) : Double[] {
let sigmaOut = sigma / (2. ^ IntAsDouble(n));
let anglesOut = Mapped(
Angle(sigmaOut, _, 10^3),
LevelMeans(mu, n)
);
return anglesOut;
}
/// # Summary
/// Prepare the Gaussian wavefunction on a register.
/// # Input
/// ## sigma
/// Standard deviation.
/// ## mu
/// Mean.
/// ## num_qubits
/// The number of qubits.
operation PrepareGaussianWavefunction(sigma : Double, mu : Double, register : Qubit[]) : Unit is Adj {
// Compute angle.
mutable theta = Angle(sigma, mu, 10^3);
// Rotate the 1st qubit by angle theta.
Ry(2. * theta, register[0]);
for n in 1..Length(register) - 1 {
// Compute a list of all the rotation angles at level n.
let listLevelAngles = LevelAngles(sigma, mu, n);
// For each bitstring at current level, apply a controlled rotation to the
// next qubit.
for i in 0..2^n - 1 {
let bitstring = IntAsBoolArray(i,n);
let rotation = Ry(2. * listLevelAngles[i], _);
ApplyControlledOnBitString(bitstring, rotation, register[0..n-1], register[n]);
}
}
}
/// # Summary
/// Prepare the Gaussian wavefunction on a register using the recursive implementation.
/// # Input
/// ## sigma
/// Standard deviation.
/// ## mu
/// Mean.
/// ## nQubits
/// The number of qubits.
/// ## bitstring
/// An empty bitstring.
/// ## register
/// The qubit register.
operation PrepareGaussianWavefunctionRecursive(
sigma : Double, mu : Double, nQubits : Int, bitstring: Bool[],
register : Qubit[]
)
: Unit is Adj {
let rotateByAlpha = Ry(2. * Angle(sigma, mu, 10^3), _);
// If the number of qubits is 1, then simply do a rotation to the qubit.
if nQubits == 1 {
rotateByAlpha(register[0]);
}
// If there's more than 1 qubit, construct the state recursively.
elif nQubits > 1 {
// If there's a single qubit, then simply do a rotation.
if IsEmpty(bitstring) or nQubits == 1 {
// Rotate the 1st qubit.
rotateByAlpha(register[0]);
}
// If the bitstring is not empty but not longer than the number of qubits, or
// it's not the 1st qubit but not after the last qubit.
elif Length(bitstring) < nQubits {
// Apply the controlled rotation with the bitstring to the next qubit.
let n = Length(bitstring);
ApplyControlledOnBitString(bitstring, rotateByAlpha, register[0..n - 1], register[n]);
}
if Length(bitstring) != nQubits and nQubits != 1 {
// Add a 0 to the bitstring and call the function recursively.
let bitstring0 = bitstring + [false];
PrepareGaussianWavefunctionRecursive(sigma / 2., mu / 2., nQubits, bitstring0, register);
// Add a 1 to the bitstring and call the function recursively.
let bitstring1 = bitstring + [true];
PrepareGaussianWavefunctionRecursive(sigma / 2., (mu - 1.) / 2., nQubits, bitstring1, register);
}
}
}
}