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Introduction
What is the problem
In decentralization where we rely on untrusted parties, exchanges requires integrity and
authenticity, at a very big scale.
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In decentralization where we rely on untrusted parties, exchanges requires integrity and
authenticity, at a very big scale.

Integrity: The property that data or information have not been altered or destroyed.

Solved using a hash function, changing a single bit of data will change the hash.

Authenticity: The property that data originated from its purported source.

Solved using cryptographic signatures (RSA, ECDSA), generated using a secret key
only the owner has, can be verified by anyone using the public key associated to the
secret key.
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Introduction
Let's hash everything ! ... No ?
Bitcoin: 2500 to 4600 transactions per block

Situation

Alice paid a pizza 10 BTC in "Hacker Pizza" using her smartphone, want to check if
transaction accepted. 
Hacker Pizza's WIFI alters the data she receives

Only solution to protect herself

Hash all the transactions, compare with hash given in block header, then verify the block
header's signature is correct.
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What is a Merkle Tree
Hash large data, pieces by pieces, without compromises on integrity.
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Hash the transaction: H0-1
Ask H1 and H0-0, verify signatures
H0 = Hash(H0-0, H0-1)

TopHash = Hash(H0, H1)

Compare Top hash to the one in block
header
Verify signature of the hash in block
header

What is a Merkle Tree
Alice wants to verify the transaction L2
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What is a Merkle Tree
Merkle Proof: All the data needed to verify a leaf of the tree

For Alice's tx: Hash(L2) + H0-0 + H1 (concatenated)
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What is a Merkle Tree
Merkle Proof: All the data needed to verify a leaf of the tree

For Alice's tx: Hash(L2) + H0-0 + H1 (concatenated)

To compute hash of tree with 256 leaves, 8 hashes needed

Simplifies a O(N) operation to O(log(N))

Have hash of a modified datastore with N elements requires O(log(N)) hashes
operations.
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Why we want it in Massa
Want to have a fingerprint of the Ledger 
Check its integrity
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Why we want it in Massa
Want to have a fingerprint of the Ledger 
Check its integrity

Ledger of Massa: 1TB of data

Current implementation

Add new data to the ledger: F' = F XOR Hash(new_data) 
Remove data off the ledger: F' = F XOR Hash(rm_data)

Simple, fast, incremental

Not a hash function, not suited for integrity checks 
If A XOR B = 0, then C XOR (A XOR B) = C
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Why we want it in Massa
So let's use Merkle Trees ! Why Sparse ?
What if we want to add a new data between L1 and L2 ?
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Why Sparse Merkle Tree is what we need
Additions to Merkle Trees
Allows for null leaves (with Hash(null) a known constant)
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Can know if a key is not present, go through the tree, check if value is null
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Why Sparse Merkle Tree is what we need
Additions to Merkle Trees
Allows for null leaves (with Hash(null) a known constant)

Populate all the possible keys with a leaf of value null

Can know if a key is not present, go through the tree, check if value is null

Proof of non-inclusion
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Why Sparse Merkle Tree is what we need
Proof of inclusion

Proof of non-inclusion

Integrity check over the whole data

No compromises
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Why Sparse Merkle Tree is what we need
Proof of inclusion

Proof of non-inclusion

Integrity check over the whole data

No compromises

Note: Incremental hash was also a different posibility, look at the discussion on Github
to find more details on why SMT was chosen.
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Why Sparse Merkle Tree is what we need
Proof of inclusion

Proof of non-inclusion

Integrity check over the whole data

No compromises

Note: Incremental hash was also a different posibility, look at the discussion on Github
to find more details on why SMT was chosen.
Or ask to Varun, he explains it very well :-)
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The frameworks for SMT in Rust
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struct SparseMerkleTree<H: Hasher, D: Database> { ... }
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The frameworks for SMT in Rust
struct SparseMerkleTree<H: Hasher, D: Database> { ... }

trait Database {

  fn get(...)

  fn put(...)

  fn remove(...)

}

trait Hasher {

  fn new(...)

  fn update(...)

  fn finalize(...)

}
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The frameworks for SMT in Rust
Why benchmark ?
Huge tree with null values everywhere
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The frameworks for SMT in Rust
Why benchmark ?
Huge tree with null values everywhere

Can be heavily optimized in space and in computation

Underlying database calls can also be optimized

Very implementation-dependant
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The frameworks for SMT in Rust
Benchmarks
Implemented Blake3Hasher, MemoryStorage, RockSdbStorage
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The frameworks for SMT in Rust
Benchmarks
Implemented Blake3Hasher, MemoryStorage, RockSdbStorage

Framework Last updated Stars on Github

Monotree Dec. 2021 32

Sparse-Merkle-Tree 6 months ago 25

lsmtree 9 months ago 15
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The frameworks for SMT in Rust
Benchmarks
Implemented Blake3Hasher, MemoryStorage, RockSdbStorage

Framework Last updated Stars on Github

Monotree Dec. 2021 32

Sparse-Merkle-Tree 6 months ago 25

lsmtree 9 months ago 15

cw-merkle-tree was ignored as it's too tied to CosmWasm smart contract
framework
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The frameworks for SMT in Rust
Benchmarks
On MemoryStore (storage in RAM)

monotree/memstore+blake3

  time:   [17.473 µs 17.619 µs 17.770 µs]

sparse-merkle-tree/memstore+blake3

  time:   [119.37 µs 120.63 µs 122.11 µs]

lsmtree/memstore+blake3

  time:   [25.587 µs 25.768 µs 25.952 µs]
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The frameworks for SMT in Rust
Benchmarks
On RocksDB (storage on the disk)

monotree/rocksdb+blake3

  time:   [153.27 µs 155.79 µs 158.37 µs]

sparse-merkle-tree/rocksdb+blake3

  time:   [1.3083 ms 1.3135 ms 1.3190 ms]

lsmtree/rocksdb+blake3

  time:   [248.28 µs 249.85 µs 251.47 µs]
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The frameworks for SMT in Rust
Read / Write operations benchmark
On MemoryStore (storage in RAM)

monotree/memstore+blake3/read

  time:   [2.7194 µs 2.7374 µs 2.7564 µs]

lsmtree/memstore+blake3/read

  time:   [174.66 ns 178.09 ns 181.79 ns]

monotree/memstore+blake3/write

  time:   [14.213 µs 14.318 µs 14.423 µs]

lsmtree/memstore+blake3/write

  time:   [24.849 µs 25.431 µs 26.049 µs]
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The frameworks for SMT in Rust
Read / Write operations benchmark
On RocksDB (storage on the disk)

monotree/rocksdb+blake3/read

  time:   [10.370 µs 10.646 µs 10.938 µs]

lsmtree/rocksdb+blake3/read

  time:   [581.90 ns 609.57 ns 638.72 ns]

monotree/rocksdb+blake3/write

  time:   [150.39 µs 161.96 µs 172.92 µs]

lsmtree/rocksdb+blake3/write

  time:   [233.95 µs 239.78 µs 245.64 µs]

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 18 / 20



What framework to choose ?
I recommend Monotree
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What framework to choose ?
I recommend Monotree

Optimization on database access, N -> log2(N)

Very simple Database and Hasher traits

Fully featured already

Simple but efficient

Can be maintained by our own means
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Some links
Benchmark code

Article on a performance-oriented SMT implementation

How Merkle trees is used in Bitcoin

Github discussions about implementing SMT in Massa

Why use binary trees over trees with more children

Libra whitepaper, contains optimizations for SMT
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https://github.com/litchipi/smt_benchmark
https://ouvrard-pierre-alain.medium.com/sparse-merkle-tree-86e6e2fc26da
https://learnmeabitcoin.com/technical/merkle-root
https://github.com/massalabs/massa/discussions/3852
https://bitcoin.stackexchange.com/questions/42624/are-bitcoin-merkle-trees-always-binary
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf

