
Sparse Merkle
Trees

Introducing the concept and benchmarking
libraries available in Rust

1 / 20

Table of contents
Introduction
What is a Merkle Tree
Usage in Massa
Why Sparse Merkle Tree is what we need
The frameworks for SMT in Rust
Conclusion

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 2 / 20

Introduction
What is the problem
In decentralization where we rely on untrusted parties, exchanges requires integrity and
authenticity, at a very big scale.

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 3 / 20

Introduction
What is the problem
In decentralization where we rely on untrusted parties, exchanges requires integrity and
authenticity, at a very big scale.

Integrity: The property that data or information have not been altered or destroyed.

Solved using a hash function, changing a single bit of data will change the hash.

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 3 / 20

Introduction
What is the problem
In decentralization where we rely on untrusted parties, exchanges requires integrity and
authenticity, at a very big scale.

Integrity: The property that data or information have not been altered or destroyed.

Solved using a hash function, changing a single bit of data will change the hash.

Authenticity: The property that data originated from its purported source.

Solved using cryptographic signatures (RSA, ECDSA), generated using a secret key
only the owner has, can be verified by anyone using the public key associated to the
secret key.

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 3 / 20

Introduction
Let's hash everything ! ... No ?
Bitcoin: 2500 to 4600 transactions per block

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 4 / 20

Introduction
Let's hash everything ! ... No ?
Bitcoin: 2500 to 4600 transactions per block

Situation

Alice paid a pizza 10 BTC in "Hacker Pizza" using her smartphone, want to check if
transaction accepted.
Hacker Pizza's WIFI alters the data she receives

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 4 / 20

Introduction
Let's hash everything ! ... No ?
Bitcoin: 2500 to 4600 transactions per block

Situation

Alice paid a pizza 10 BTC in "Hacker Pizza" using her smartphone, want to check if
transaction accepted.
Hacker Pizza's WIFI alters the data she receives

Only solution to protect herself

Hash all the transactions, compare with hash given in block header, then verify the block
header's signature is correct.

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 4 / 20

What is a Merkle Tree
Hash large data, pieces by pieces, without compromises on integrity.

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 5 / 20

Hash the transaction: H0-1
Ask H1 and H0-0, verify signatures
H0 = Hash(H0-0, H0-1)

TopHash = Hash(H0, H1)

Compare Top hash to the one in block
header
Verify signature of the hash in block
header

What is a Merkle Tree
Alice wants to verify the transaction L2

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 6 / 20

What is a Merkle Tree
Merkle Proof: All the data needed to verify a leaf of the tree

For Alice's tx: Hash(L2) + H0-0 + H1 (concatenated)

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 7 / 20

What is a Merkle Tree
Merkle Proof: All the data needed to verify a leaf of the tree

For Alice's tx: Hash(L2) + H0-0 + H1 (concatenated)

To compute hash of tree with 256 leaves, 8 hashes needed

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 7 / 20

What is a Merkle Tree
Merkle Proof: All the data needed to verify a leaf of the tree

For Alice's tx: Hash(L2) + H0-0 + H1 (concatenated)

To compute hash of tree with 256 leaves, 8 hashes needed

Simplifies a O(N) operation to O(log(N))

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 7 / 20

What is a Merkle Tree
Merkle Proof: All the data needed to verify a leaf of the tree

For Alice's tx: Hash(L2) + H0-0 + H1 (concatenated)

To compute hash of tree with 256 leaves, 8 hashes needed

Simplifies a O(N) operation to O(log(N))

Have hash of a modified datastore with N elements requires O(log(N)) hashes
operations.

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 7 / 20

Why we want it in Massa
Want to have a fingerprint of the Ledger
Check its integrity

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 8 / 20

Why we want it in Massa
Want to have a fingerprint of the Ledger
Check its integrity

Ledger of Massa: 1TB of data

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 8 / 20

Why we want it in Massa
Want to have a fingerprint of the Ledger
Check its integrity

Ledger of Massa: 1TB of data

Current implementation

Add new data to the ledger: F' = F XOR Hash(new_data)
Remove data off the ledger: F' = F XOR Hash(rm_data)

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 8 / 20

Why we want it in Massa
Want to have a fingerprint of the Ledger
Check its integrity

Ledger of Massa: 1TB of data

Current implementation

Add new data to the ledger: F' = F XOR Hash(new_data)
Remove data off the ledger: F' = F XOR Hash(rm_data)

Simple, fast, incremental

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 8 / 20

Why we want it in Massa
Want to have a fingerprint of the Ledger
Check its integrity

Ledger of Massa: 1TB of data

Current implementation

Add new data to the ledger: F' = F XOR Hash(new_data)
Remove data off the ledger: F' = F XOR Hash(rm_data)

Simple, fast, incremental

Not a hash function, not suited for integrity checks
If A XOR B = 0, then C XOR (A XOR B) = C

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 8 / 20

Why we want it in Massa
So let's use Merkle Trees ! Why Sparse ?
What if we want to add a new data between L1 and L2 ?

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 9 / 20

Why Sparse Merkle Tree is what we need
Additions to Merkle Trees
Allows for null leaves (with Hash(null) a known constant)

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 10 / 20

Why Sparse Merkle Tree is what we need
Additions to Merkle Trees
Allows for null leaves (with Hash(null) a known constant)

Populate all the possible keys with a leaf of value null

Can know if a key is not present, go through the tree, check if value is null

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 10 / 20

Why Sparse Merkle Tree is what we need
Additions to Merkle Trees
Allows for null leaves (with Hash(null) a known constant)

Populate all the possible keys with a leaf of value null

Can know if a key is not present, go through the tree, check if value is null

Proof of non-inclusion

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 10 / 20

Why Sparse Merkle Tree is what we need
Proof of inclusion

Proof of non-inclusion

Integrity check over the whole data

No compromises

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 11 / 20

Why Sparse Merkle Tree is what we need
Proof of inclusion

Proof of non-inclusion

Integrity check over the whole data

No compromises

Note: Incremental hash was also a different posibility, look at the discussion on Github
to find more details on why SMT was chosen.

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 11 / 20

Why Sparse Merkle Tree is what we need
Proof of inclusion

Proof of non-inclusion

Integrity check over the whole data

No compromises

Note: Incremental hash was also a different posibility, look at the discussion on Github
to find more details on why SMT was chosen.
Or ask to Varun, he explains it very well :-)

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 11 / 20

The frameworks for SMT in Rust

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 12 / 20

The frameworks for SMT in Rust
struct SparseMerkleTree<H: Hasher, D: Database> { ... }

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 12 / 20

The frameworks for SMT in Rust
struct SparseMerkleTree<H: Hasher, D: Database> { ... }

trait Database {

 fn get(...)

 fn put(...)

 fn remove(...)

}

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 12 / 20

The frameworks for SMT in Rust
struct SparseMerkleTree<H: Hasher, D: Database> { ... }

trait Database {

 fn get(...)

 fn put(...)

 fn remove(...)

}

trait Hasher {

 fn new(...)

 fn update(...)

 fn finalize(...)

}

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 12 / 20

The frameworks for SMT in Rust
Why benchmark ?
Huge tree with null values everywhere

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 13 / 20

The frameworks for SMT in Rust
Why benchmark ?
Huge tree with null values everywhere

Can be heavily optimized in space and in computation

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 13 / 20

The frameworks for SMT in Rust
Why benchmark ?
Huge tree with null values everywhere

Can be heavily optimized in space and in computation

Underlying database calls can also be optimized

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 13 / 20

The frameworks for SMT in Rust
Why benchmark ?
Huge tree with null values everywhere

Can be heavily optimized in space and in computation

Underlying database calls can also be optimized

Very implementation-dependant

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 13 / 20

The frameworks for SMT in Rust
Benchmarks
Implemented Blake3Hasher, MemoryStorage, RockSdbStorage

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 14 / 20

The frameworks for SMT in Rust
Benchmarks
Implemented Blake3Hasher, MemoryStorage, RockSdbStorage

Framework Last updated Stars on Github

Monotree Dec. 2021 32

Sparse-Merkle-Tree 6 months ago 25

lsmtree 9 months ago 15

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 14 / 20

The frameworks for SMT in Rust
Benchmarks
Implemented Blake3Hasher, MemoryStorage, RockSdbStorage

Framework Last updated Stars on Github

Monotree Dec. 2021 32

Sparse-Merkle-Tree 6 months ago 25

lsmtree 9 months ago 15

cw-merkle-tree was ignored as it's too tied to CosmWasm smart contract
framework

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 14 / 20

The frameworks for SMT in Rust
Benchmarks
On MemoryStore (storage in RAM)

monotree/memstore+blake3

 time: [17.473 µs 17.619 µs 17.770 µs]

sparse-merkle-tree/memstore+blake3

 time: [119.37 µs 120.63 µs 122.11 µs]

lsmtree/memstore+blake3

 time: [25.587 µs 25.768 µs 25.952 µs]

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 15 / 20

The frameworks for SMT in Rust
Benchmarks
On RocksDB (storage on the disk)

monotree/rocksdb+blake3

 time: [153.27 µs 155.79 µs 158.37 µs]

sparse-merkle-tree/rocksdb+blake3

 time: [1.3083 ms 1.3135 ms 1.3190 ms]

lsmtree/rocksdb+blake3

 time: [248.28 µs 249.85 µs 251.47 µs]

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 16 / 20

The frameworks for SMT in Rust
Read / Write operations benchmark
On MemoryStore (storage in RAM)

monotree/memstore+blake3/read

 time: [2.7194 µs 2.7374 µs 2.7564 µs]

lsmtree/memstore+blake3/read

 time: [174.66 ns 178.09 ns 181.79 ns]

monotree/memstore+blake3/write

 time: [14.213 µs 14.318 µs 14.423 µs]

lsmtree/memstore+blake3/write

 time: [24.849 µs 25.431 µs 26.049 µs]

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 17 / 20

The frameworks for SMT in Rust
Read / Write operations benchmark
On RocksDB (storage on the disk)

monotree/rocksdb+blake3/read

 time: [10.370 µs 10.646 µs 10.938 µs]

lsmtree/rocksdb+blake3/read

 time: [581.90 ns 609.57 ns 638.72 ns]

monotree/rocksdb+blake3/write

 time: [150.39 µs 161.96 µs 172.92 µs]

lsmtree/rocksdb+blake3/write

 time: [233.95 µs 239.78 µs 245.64 µs]

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 18 / 20

What framework to choose ?
I recommend Monotree

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 19 / 20

What framework to choose ?
I recommend Monotree

Optimization on database access, N -> log2(N)

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 19 / 20

What framework to choose ?
I recommend Monotree

Optimization on database access, N -> log2(N)

Very simple Database and Hasher traits

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 19 / 20

What framework to choose ?
I recommend Monotree

Optimization on database access, N -> log2(N)

Very simple Database and Hasher traits

Fully featured already

Simple but efficient

Can be maintained by our own means

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 19 / 20

Some links
Benchmark code

Article on a performance-oriented SMT implementation

How Merkle trees is used in Bitcoin

Github discussions about implementing SMT in Massa

Why use binary trees over trees with more children

Libra whitepaper, contains optimizations for SMT

Sparse Merkle Trees - Timothée Cercueil © Massa Labs 2023 20 / 20

https://github.com/litchipi/smt_benchmark
https://ouvrard-pierre-alain.medium.com/sparse-merkle-tree-86e6e2fc26da
https://learnmeabitcoin.com/technical/merkle-root
https://github.com/massalabs/massa/discussions/3852
https://bitcoin.stackexchange.com/questions/42624/are-bitcoin-merkle-trees-always-binary
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf

