Skip to content

Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

Notifications You must be signed in to change notification settings

maoyunyao/JOINT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JOINT

This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021.

@inproceedings{joint_iccv_2021,
  title={Joint Inductive and Transductive Learning for Video Object Segmentation},
  author={Yunyao Mao, Ning Wang, Wengang Zhou, Houqiang Li},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  month = {October},
  year={2021}
}

JOINT overview figure

Installation

Clone this repository

git clone /~https://github.com/maoyunyao/JOINT.git

Install dependencies

Please check the detailed installation instructions.

Training

The whole network is trained with 8 NVIDIA GTX 1080Ti GPUs

conda activate pytracking
cd ltr
python run_training.py joint joint_stage1  # stage 1
python run_training.py joint joint_stage2  # stage 2

Note: We initialize the backbone ResNet with pre-trained Mask-RCNN weights as in LWL. These weights can be obtained from here. Before training, you need to download and save these weights in env_settings().pretrained_networks directory.

Evaluation

conda activate pytracking
cd pytracking
python run_tracker.py joint joint_davis --dataset_name dv2017_val        # DAVIS 2017 Val
python run_tracker.py joint joint_ytvos --dataset_name yt2018_valid_all  # YouTube-VOS 2018 Val
python run_tracker.py joint joint_ytvos --dataset_name yt2019_valid_all  # YouTube-VOS 2019 Val

Note: Before evaluation, the pretrained networks (see model zoo) should be downloaded and saved into the directory set by "network_path" in "pytracking/evaluation/local.py". By default, it is set to pytracking/networks.

Model Zoo

Models

Model YouTube-VOS 2018 (Overall Score) YouTube-VOS 2019 (Overall Score) DAVIS 2017 val (J&F score) Links Raw Results
JOINT_ytvos 83.1 82.8 -- model results
JOINT_davis -- -- 83.5 model results

Acknowledgments

  • Our JOINT segmentation tracker is implemented based on pytracking. We sincerely thank the authors Martin Danelljan and Goutam Bhat for providing such a great framework.
  • We adopt the few-shot learner proposed in LWL as the Induction branch.

About

Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages