
Benchmark of two PHP GraphQL implementations

joon

June 2021

1 Introduction

This document should give an impression of the speed of the new PHP GraphQL implemen-
tation joonlabs/php-graphql. A comparison to the currently most popular PHP GraphQL
implementation webonyx/graphql-php is drawn. Both libraries are tested with the same
schema and the same queries on to different server setups each, to allow a consistent but also
real-use-case like comparison. The schema that is used, is the Star Wars schema, which is
included in both libraries.

2 Setup and Reproduction

This benchmark is performed using curl. After both implementations are started on one server
each, a shell script executes a specified query 200 times against each of these two servers. In
order to avoid influences by cold restarts, each query is executed 5 times before starting to
record the data. A random comment is added to each query every call to prevent server-side
caching. The response time of each curl request is stored and once all queries finished, they are
combined into a JSON file. The resulting JSON file is then analyzed and values such as the
mean and standard deviation are calculated.
This benchmark uses four different queries, which represent different levels of complexity, to
evaluate the parsing, validation and execution of both implementations. The four queries can
be found in the appendix, as can the measurement results.
To make this comparison as reproducible as possible, a separate Git repository is available at
https://github.com/joonlabs/graphql-benchmarks, which contains the benchmark scripts
and both schema implementations.
The benchmarks for this document were run on a local PHP built-in server on a MacBook
Pro (13”, M1, 2020) with PHP v7.4.1 and on an Apache web server in production mode at
https://graphql.joonlabs.com/ running PHP v7.3.25. Multithreading was not enabled in either
server.

3 Results

For performance differences in percent, the following formular is used, where tfaster is the
response time of the faster server and tslower is the response time of the slower server:

∆p = 1 −
tfaster
tslower

(1)

Looking at table 1 we can see that joonlabs/php-graphql outperforms webonyx/graphql-
php by 52.42%, running the query Q1. Running the query Q2, joonlabs/php-graphql is

1

https://github.com/joonlabs/graphql-benchmarks


17.84% faster and running the query Q4, it is 3.84% faster. When running the Query Q3, both
libraries seem to perform equally while webonyx/graphql-php is (on average) 1.1ms faster
regarding this query. Because these benchmarks were run on a local server the standard devia-
tion is low, as there have not been any external network influences like packet loss, connection
issues, etc. For a detailed look at the data, take a look at table 1 and the figure 1.
In comparison to that, when looking at table 2 (and figure 2) we can now see the network
influence, represented by the higher standard deviation. Here a standard deviation of about
13ms to 80ms is always present. Despite that, you can still see the speed differences between the
two libraries, as joonlabs/php-graphql outperforms webonyx/graphql-php here as well.
A total difference in the measured response time of 5ms to 20ms can be obtained for each query
in average.

4 Discussion

As described above, we can obtain that joonlabs/php-graphql outperforms webonyx/graphql-
php in terms of speed in the most example queries of this benchmark. Despite this fact it must
be said, that this document is not meant to be evidence or a statement that one of the libraries
is better than the other. Both libraries follow different approaches and have different strengths
and weaknesses. This document should only provide a reproducible possibility to enable an in-
dependent benchmark with as real-world influences as possible and to compare response times.
Also only the Star Wars schema is tested here, which should not be used solely as a basis for an
absolute speed evaluation or comparison, since schemas in real-world use cases usually deviate
strongly from one another in size, complexity and area of application.

2



5 Appendix

Query Iterations
joonlabs
mean (ms)

webonyx
mean (ms)

joonlabs
SD (ms)

webonyx
SD (ms)

Q1 200 12.59 26.46 0.34 0.32
Q2 200 29.11 35.43 0.35 0.32
Q3 200 1099.11 1097.95 4.77 5.39
Q4 200 46.13 47.97 0.48 0.32

Table 1: Test results, running on the local PHP built-in server

Query Iterations
joonlabs
mean (ms)

webonyx
mean (ms)

joonlabs
SD (ms)

webonyx
SD (ms)

Q1 200 139.80 162.43 13.32 76.06
Q2 200 148.33 167.68 13.00 78.18
Q3 200 164.24 169.01 74.89 17.91
Q4 200 185.55 195.30 76.53 79.08

Table 2: Test results run on an Apache web server

3



Query 1 - referenced as Q1

{

hero{

name

}

}

Query 2 - referenced as Q2

query{

hero(episode: JEDI){

id

name

appearsIn

secretBackstory

friends{

id

name

... on Droid{

appearsIn

primaryFunction

}

... on Human{

appearsIn

secretBackstory

}

... HumanFragment

}

}

}

fragment HumanFragment on Human{

id

name

appearsIn

secretBackstory

friends{

id

name

... on Droid{

appearsIn

primaryFunction

}

... on Human{

appearsIn

secretBackstory

}

}

}

4



Query 3 - referenced as Q3

query{

human(id:"1001"){

... HumanFragment

}

droid(id:"2001"){

... DroidFragment

}

hero(episode: JEDI){

id

name

appearsIn

secretBackstory

friends{

id

name

... on Droid{

appearsIn

primaryFunction

}

... on Human{

appearsIn

secretBackstory

}

... HumanFragment

}

}

}

fragment HumanFragment on Human{

id

name

appearsIn

secretBackstory

friends{

id

name

... on Droid{

appearsIn

primaryFunction

friends{

... CharacterFragment

}

}

... on Human{

appearsIn

secretBackstory

friends{

5



... CharacterFragment

}

}

}

}

fragment DroidFragment on Droid{

id

name

appearsIn

primaryFunction

friends{

id

name

... on Droid{

appearsIn

primaryFunction

friends{

... CharacterFragment

}

}

... on Human{

appearsIn

secretBackstory

friends{

... CharacterFragment

}

}

}

}

fragment CharacterFragment on Character{

id

name

friends{

name

}

}

Query 4 - referenced as Q4

IntrospectionQuery {

__schema {

queryType { name }

mutationType { name }

subscriptionType { name }

types {

...FullType

}

6



directives {

name

description

args {

...InputValue

}

}

}

}

fragment FullType on __Type {

kind

name

description

fields(includeDeprecated: true) {

name

description

args {

...InputValue

}

type {

...TypeRef

}

isDeprecated

deprecationReason

}

inputFields {

...InputValue

}

interfaces {

...TypeRef

}

enumValues(includeDeprecated: true) {

name

description

isDeprecated

deprecationReason

}

possibleTypes {

...TypeRef

}

}

fragment InputValue on __InputValue {

name

description

type { ...TypeRef }

defaultValue

}

7



fragment TypeRef on __Type {

kind

name

ofType {

kind

name

ofType {

kind

name

ofType {

kind

name

}

}

}

}

8



Figure 1: Test results, running on the local PHP built-in server

9



Figure 2: Test results run on an Apache web server at https://graphql.joonlabs.com

10


	Introduction
	Setup and Reproduction
	Results
	Discussion
	Appendix

