-
Notifications
You must be signed in to change notification settings - Fork 493
/
Copy pathdynamic_pointcloud_example.cpp
141 lines (125 loc) · 5.41 KB
/
dynamic_pointcloud_example.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2011-2025 Jose Luis Blanco (joseluisblancoc@gmail.com).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <nanoflann.hpp>
#include "utils.h"
template <typename num_t>
void kdtree_demo(const size_t N)
{
PointCloud<num_t> cloud;
// construct a kd-tree index:
using my_kd_tree_t = nanoflann::KDTreeSingleIndexDynamicAdaptor<
nanoflann::L2_Simple_Adaptor<num_t, PointCloud<num_t>>,
PointCloud<num_t>, 3 /* dim */
>;
dump_mem_usage();
my_kd_tree_t index(3 /*dim*/, cloud, {10 /* max leaf */});
// Generate points:
generateRandomPointCloud(cloud, N);
num_t query_pt[3] = {0.5, 0.5, 0.5};
// add points in chunks at a time
size_t chunk_size = 100;
for (size_t i = 0; i < N; i = i + chunk_size)
{
size_t end = std::min<size_t>(i + chunk_size, N - 1);
// Inserts all points from [i, end]
index.addPoints(i, end);
}
// remove a point
size_t removePointIndex = N - 1;
index.removePoint(removePointIndex);
dump_mem_usage();
{
std::cout << "Searching for 1 element..." << std::endl;
// do a knn search
const size_t num_results = 1;
size_t ret_index;
num_t out_dist_sqr;
nanoflann::KNNResultSet<num_t> resultSet(num_results);
resultSet.init(&ret_index, &out_dist_sqr);
index.findNeighbors(resultSet, query_pt, {10});
std::cout << "knnSearch(nn=" << num_results << "): \n";
std::cout << "ret_index=" << ret_index
<< " out_dist_sqr=" << out_dist_sqr << std::endl;
std::cout << "point: ("
<< "point: (" << cloud.pts[ret_index].x << ", "
<< cloud.pts[ret_index].y << ", " << cloud.pts[ret_index].z
<< ")" << std::endl;
std::cout << std::endl;
}
{
// do a knn search searching for more than one result
const size_t num_results = 5;
std::cout << "Searching for " << num_results << " elements"
<< std::endl;
size_t ret_index[num_results];
num_t out_dist_sqr[num_results];
nanoflann::KNNResultSet<num_t> resultSet(num_results);
resultSet.init(ret_index, out_dist_sqr);
index.findNeighbors(resultSet, query_pt);
std::cout << "knnSearch(nn=" << num_results << "): \n";
std::cout << "Results: " << std::endl;
for (size_t i = 0; i < resultSet.size(); ++i)
{
std::cout << "#" << i << ",\t"
<< "index: " << ret_index[i] << ",\t"
<< "dist: " << out_dist_sqr[i] << ",\t"
<< "point: (" << cloud.pts[ret_index[i]].x << ", "
<< cloud.pts[ret_index[i]].y << ", "
<< cloud.pts[ret_index[i]].z << ")" << std::endl;
}
std::cout << std::endl;
}
{
// Unsorted radius search:
std::cout << "Unsorted radius search" << std::endl;
const num_t radiusSqr = 1;
std::vector<nanoflann::ResultItem<size_t, num_t>> indices_dists;
nanoflann::RadiusResultSet<num_t, size_t> resultSet(
radiusSqr, indices_dists);
index.findNeighbors(resultSet, query_pt);
nanoflann::ResultItem<size_t, num_t> worst_pair =
resultSet.worst_item();
std::cout << "Worst pair: idx=" << worst_pair.first
<< " dist=" << worst_pair.second << std::endl;
std::cout << "point: (" << cloud.pts[worst_pair.first].x << ", "
<< cloud.pts[worst_pair.first].y << ", "
<< cloud.pts[worst_pair.first].z << ")" << std::endl;
std::cout << std::endl;
}
}
int main()
{
// Randomize Seed
srand(static_cast<unsigned int>(time(nullptr)));
kdtree_demo<float>(1000000);
kdtree_demo<double>(1000000);
return 0;
}