-
Notifications
You must be signed in to change notification settings - Fork 784
/
Copy pathxception.py
288 lines (239 loc) · 11.3 KB
/
xception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from modeling.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d
def fixed_padding(inputs, kernel_size, dilation):
kernel_size_effective = kernel_size + (kernel_size - 1) * (dilation - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
padded_inputs = F.pad(inputs, (pad_beg, pad_end, pad_beg, pad_end))
return padded_inputs
class SeparableConv2d(nn.Module):
def __init__(self, inplanes, planes, kernel_size=3, stride=1, dilation=1, bias=False, BatchNorm=None):
super(SeparableConv2d, self).__init__()
self.conv1 = nn.Conv2d(inplanes, inplanes, kernel_size, stride, 0, dilation,
groups=inplanes, bias=bias)
self.bn = BatchNorm(inplanes)
self.pointwise = nn.Conv2d(inplanes, planes, 1, 1, 0, 1, 1, bias=bias)
def forward(self, x):
x = fixed_padding(x, self.conv1.kernel_size[0], dilation=self.conv1.dilation[0])
x = self.conv1(x)
x = self.bn(x)
x = self.pointwise(x)
return x
class Block(nn.Module):
def __init__(self, inplanes, planes, reps, stride=1, dilation=1, BatchNorm=None,
start_with_relu=True, grow_first=True, is_last=False):
super(Block, self).__init__()
if planes != inplanes or stride != 1:
self.skip = nn.Conv2d(inplanes, planes, 1, stride=stride, bias=False)
self.skipbn = BatchNorm(planes)
else:
self.skip = None
self.relu = nn.ReLU(inplace=True)
rep = []
filters = inplanes
if grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(inplanes, planes, 3, 1, dilation, BatchNorm=BatchNorm))
rep.append(BatchNorm(planes))
filters = planes
for i in range(reps - 1):
rep.append(self.relu)
rep.append(SeparableConv2d(filters, filters, 3, 1, dilation, BatchNorm=BatchNorm))
rep.append(BatchNorm(filters))
if not grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(inplanes, planes, 3, 1, dilation, BatchNorm=BatchNorm))
rep.append(BatchNorm(planes))
if stride != 1:
rep.append(self.relu)
rep.append(SeparableConv2d(planes, planes, 3, 2, BatchNorm=BatchNorm))
rep.append(BatchNorm(planes))
if stride == 1 and is_last:
rep.append(self.relu)
rep.append(SeparableConv2d(planes, planes, 3, 1, BatchNorm=BatchNorm))
rep.append(BatchNorm(planes))
if not start_with_relu:
rep = rep[1:]
self.rep = nn.Sequential(*rep)
def forward(self, inp):
x = self.rep(inp)
if self.skip is not None:
skip = self.skip(inp)
skip = self.skipbn(skip)
else:
skip = inp
x = x + skip
return x
class AlignedXception(nn.Module):
"""
Modified Alighed Xception
"""
def __init__(self, output_stride, BatchNorm,
pretrained=True):
super(AlignedXception, self).__init__()
if output_stride == 16:
entry_block3_stride = 2
middle_block_dilation = 1
exit_block_dilations = (1, 2)
elif output_stride == 8:
entry_block3_stride = 1
middle_block_dilation = 2
exit_block_dilations = (2, 4)
else:
raise NotImplementedError
# Entry flow
self.conv1 = nn.Conv2d(3, 32, 3, stride=2, padding=1, bias=False)
self.bn1 = BatchNorm(32)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32, 64, 3, stride=1, padding=1, bias=False)
self.bn2 = BatchNorm(64)
self.block1 = Block(64, 128, reps=2, stride=2, BatchNorm=BatchNorm, start_with_relu=False)
self.block2 = Block(128, 256, reps=2, stride=2, BatchNorm=BatchNorm, start_with_relu=False,
grow_first=True)
self.block3 = Block(256, 728, reps=2, stride=entry_block3_stride, BatchNorm=BatchNorm,
start_with_relu=True, grow_first=True, is_last=True)
# Middle flow
self.block4 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block5 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block6 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block7 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block8 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block9 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block10 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block11 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block12 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block13 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block14 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block15 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block16 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block17 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block18 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block19 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
# Exit flow
self.block20 = Block(728, 1024, reps=2, stride=1, dilation=exit_block_dilations[0],
BatchNorm=BatchNorm, start_with_relu=True, grow_first=False, is_last=True)
self.conv3 = SeparableConv2d(1024, 1536, 3, stride=1, dilation=exit_block_dilations[1], BatchNorm=BatchNorm)
self.bn3 = BatchNorm(1536)
self.conv4 = SeparableConv2d(1536, 1536, 3, stride=1, dilation=exit_block_dilations[1], BatchNorm=BatchNorm)
self.bn4 = BatchNorm(1536)
self.conv5 = SeparableConv2d(1536, 2048, 3, stride=1, dilation=exit_block_dilations[1], BatchNorm=BatchNorm)
self.bn5 = BatchNorm(2048)
# Init weights
self._init_weight()
# Load pretrained model
if pretrained:
self._load_pretrained_model()
def forward(self, x):
# Entry flow
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.block1(x)
# add relu here
x = self.relu(x)
low_level_feat = x
x = self.block2(x)
x = self.block3(x)
# Middle flow
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)
x = self.block13(x)
x = self.block14(x)
x = self.block15(x)
x = self.block16(x)
x = self.block17(x)
x = self.block18(x)
x = self.block19(x)
# Exit flow
x = self.block20(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.bn4(x)
x = self.relu(x)
x = self.conv5(x)
x = self.bn5(x)
x = self.relu(x)
return x, low_level_feat
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, SynchronizedBatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _load_pretrained_model(self):
pretrain_dict = model_zoo.load_url('http://data.lip6.fr/cadene/pretrainedmodels/xception-b5690688.pth')
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrain_dict.items():
if k in state_dict:
if 'pointwise' in k:
v = v.unsqueeze(-1).unsqueeze(-1)
if k.startswith('block11'):
model_dict[k] = v
model_dict[k.replace('block11', 'block12')] = v
model_dict[k.replace('block11', 'block13')] = v
model_dict[k.replace('block11', 'block14')] = v
model_dict[k.replace('block11', 'block15')] = v
model_dict[k.replace('block11', 'block16')] = v
model_dict[k.replace('block11', 'block17')] = v
model_dict[k.replace('block11', 'block18')] = v
model_dict[k.replace('block11', 'block19')] = v
elif k.startswith('block12'):
model_dict[k.replace('block12', 'block20')] = v
elif k.startswith('bn3'):
model_dict[k] = v
model_dict[k.replace('bn3', 'bn4')] = v
elif k.startswith('conv4'):
model_dict[k.replace('conv4', 'conv5')] = v
elif k.startswith('bn4'):
model_dict[k.replace('bn4', 'bn5')] = v
else:
model_dict[k] = v
state_dict.update(model_dict)
self.load_state_dict(state_dict)
if __name__ == "__main__":
import torch
model = AlignedXception(BatchNorm=nn.BatchNorm2d, pretrained=True, output_stride=16)
input = torch.rand(1, 3, 512, 512)
output, low_level_feat = model(input)
print(output.size())
print(low_level_feat.size())