2024/06/02:
- Add docstrings for all
kimm
models. - Merge reparameterizable layers into 1
ReparameterizableConv2D
- Add
GhostNetV3*
from huawei-noah/Efficient-AI-Backbones
Keras Image Models (kimm
) is a collection of image models, blocks and layers written in Keras 3. The goal is to offer SOTA models with pretrained weights in a user-friendly manner.
KIMM is:
- π A model zoo where almost all models come with pre-trained weights on ImageNet.
- π§° Providing APIs to export models to
.tflite
and.onnx
. - π§ Supporting the reparameterization technique.
- β¨ Integrated with feature extraction capability.
kimm.list_models
kimm.models.*.available_feature_keys
kimm.models.*(...)
kimm.models.*(..., feature_extractor=True, feature_keys=[...])
import keras
import kimm
# List available models
print(kimm.list_models("mobileone", weights="imagenet"))
# ['MobileOneS0', 'MobileOneS1', 'MobileOneS2', 'MobileOneS3']
# Initialize model with pretrained ImageNet weights
# Note: all `kimm` models expect inputs in the value range of [0, 255] by
# default if `include_preprocessing=True`
x = keras.random.uniform([1, 224, 224, 3]) * 255.0
model = kimm.models.MobileOneS0()
y = model.predict(x)
print(y.shape)
# (1, 1000)
# Print some basic information about the model
print(model)
# <MobileOneS0 name=MobileOneS0, input_shape=(None, None, None, 3),
# default_size=224, preprocessing_mode="imagenet", feature_extractor=False,
# feature_keys=None>
# This information can also be accessed through properties
print(model.input_shape, model.default_size, model.preprocessing_mode)
# List available feature keys of the model class
print(kimm.models.MobileOneS0.available_feature_keys)
# ['STEM_S2', 'BLOCK0_S4', 'BLOCK1_S8', 'BLOCK2_S16', 'BLOCK3_S32']
# Enable feature extraction by setting `feature_extractor=True`
# `feature_keys` can be optionally specified
feature_extractor = kimm.models.MobileOneS0(
feature_extractor=True, feature_keys=["BLOCK2_S16", "BLOCK3_S32"]
)
features = feature_extractor.predict(x)
for feature_name, feature in features.items():
print(feature_name, feature.shape)
# BLOCK2_S16 (1, 14, 14, 256), BLOCK3_S32 (1, 7, 7, 1024), ...
Note
All models in kimm
expect inputs in the value range of [0, 255] by default if include_preprocessing=True
.
Some models only accept static inputs. You should explicitly specify the input shape for these models by input_shape=[*, *, 3]
.
kimm.utils.get_reparameterized_model
kimm.export.export_tflite
kimm.export.export_onnx
import keras
import kimm
import numpy as np
# Initialize a reparameterizable model
x = keras.random.uniform([1, 224, 224, 3]) * 255.0
model = kimm.models.MobileOneS0()
y = model.predict(x)
# Get reparameterized model by kimm.utils.get_reparameterized_model
reparameterized_model = kimm.utils.get_reparameterized_model(model)
y2 = reparameterized_model.predict(x)
np.testing.assert_allclose(
keras.ops.convert_to_numpy(y), keras.ops.convert_to_numpy(y2), atol=1e-3
)
# Export model to tflite format
kimm.export.export_tflite(reparameterized_model, 224, "model.tflite")
# Export model to onnx format
# Note: must be "channels_first" format before the exporting
# kimm.export.export_onnx(reparameterized_model, 224, "model.onnx")
pip install keras kimm -U
Important
Make sure you have installed a supported backend for Keras.
Using kimm.models.VisionTransformerTiny16
:
1/1 ββββββββββββββββββββ 1s 1s/step
Predicted: [('n02504458', 'African_elephant', 0.6895825), ('n01871265', 'tusker', 0.17934209), ('n02504013', 'Indian_elephant', 0.12927249)]
Using kimm.models.EfficientNetLiteB0
:
Reference: Transfer learning & fine-tuning (keras.io)
Using kimm.models.MobileViTS
:
Reference: Grad-CAM class activation visualization (keras.io)
Model | Paper | Weights are ported from | API (kimm.models.* ) |
---|---|---|---|
ConvMixer | ICLR 2022 Submission | timm |
ConvMixer* |
ConvNeXt | CVPR 2022 | timm |
ConvNeXt* |
DenseNet | CVPR 2017 | timm |
DenseNet* |
EfficientNet | ICML 2019 | timm |
EfficientNet* |
EfficientNetLite | ICML 2019 | timm |
EfficientNetLite* |
EfficientNetV2 | ICML 2021 | timm |
EfficientNetV2* |
GhostNet | CVPR 2020 | timm |
GhostNet* |
GhostNetV2 | NeurIPS 2022 | timm |
GhostNetV2* |
GhostNetV3 | arXiv 2024 | github |
GhostNetV3* |
HGNet | timm |
HGNet* |
|
HGNetV2 | timm |
HGNetV2* |
|
InceptionNeXt | CVPR 2024 | timm |
InceptionNeXt* |
InceptionV3 | CVPR 2016 | timm |
InceptionV3 |
LCNet | arXiv 2021 | timm |
LCNet* |
MobileNetV2 | CVPR 2018 | timm |
MobileNetV2* |
MobileNetV3 | ICCV 2019 | timm |
MobileNetV3* |
MobileOne | CVPR 2023 | timm |
MobileOne* |
MobileViT | ICLR 2022 | timm |
MobileViT* |
MobileViTV2 | arXiv 2022 | timm |
MobileViTV2* |
RegNet | CVPR 2020 | timm |
RegNet* |
RepVGG | CVPR 2021 | timm |
RepVGG* |
ResNet | CVPR 2015 | timm |
ResNet* |
TinyNet | NeurIPS 2020 | timm |
TinyNet* |
VGG | ICLR 2015 | timm |
VGG* |
ViT | ICLR 2021 | timm |
VisionTransformer* |
Xception | CVPR 2017 | keras |
Xception |
The export scripts can be found in tools/convert_*.py
.
Please refer to timm as this project is built upon it.
The code here is licensed Apache 2.0.
Thanks for these awesome projects that were used in kimm
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{/~https://github.com/rwightman/pytorch-image-models}}
}
@misc{hy2024kimm,
author = {Hongyu Chiu},
title = {Keras Image Models},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{/~https://github.com/james77777778/kimm}}
}