-
Notifications
You must be signed in to change notification settings - Fork 443
/
Copy pathverifier_groth16.sol.ejs
165 lines (129 loc) · 6.02 KB
/
verifier_groth16.sol.ejs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// SPDX-License-Identifier: GPL-3.0
/*
Copyright 2021 0KIMS association.
This file is generated with [snarkJS](/~https://github.com/iden3/snarkjs).
snarkJS is a free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
snarkJS is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with snarkJS. If not, see <https://www.gnu.org/licenses/>.
*/
pragma solidity >=0.7.0 <0.9.0;
contract Groth16Verifier {
// Scalar field size
uint256 constant r = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
// Base field size
uint256 constant q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
// Verification Key data
uint256 constant alphax = <%= vk_alpha_1[0] %>;
uint256 constant alphay = <%= vk_alpha_1[1] %>;
uint256 constant betax1 = <%= vk_beta_2[0][1] %>;
uint256 constant betax2 = <%= vk_beta_2[0][0] %>;
uint256 constant betay1 = <%= vk_beta_2[1][1] %>;
uint256 constant betay2 = <%= vk_beta_2[1][0] %>;
uint256 constant gammax1 = <%= vk_gamma_2[0][1] %>;
uint256 constant gammax2 = <%= vk_gamma_2[0][0] %>;
uint256 constant gammay1 = <%= vk_gamma_2[1][1] %>;
uint256 constant gammay2 = <%= vk_gamma_2[1][0] %>;
uint256 constant deltax1 = <%= vk_delta_2[0][1] %>;
uint256 constant deltax2 = <%= vk_delta_2[0][0] %>;
uint256 constant deltay1 = <%= vk_delta_2[1][1] %>;
uint256 constant deltay2 = <%= vk_delta_2[1][0] %>;
<% for (let i=0; i<IC.length; i++) { %>
uint256 constant IC<%=i%>x = <%=IC[i][0]%>;
uint256 constant IC<%=i%>y = <%=IC[i][1]%>;
<% } %>
// Memory data
uint16 constant pVk = 0;
uint16 constant pPairing = 128;
uint16 constant pLastMem = 896;
function verifyProof(uint[2] calldata _pA, uint[2][2] calldata _pB, uint[2] calldata _pC, uint[<%=IC.length-1%>] calldata _pubSignals) public view returns (bool) {
assembly {
function checkField(v) {
if iszero(lt(v, r)) {
mstore(0, 0)
return(0, 0x20)
}
}
// G1 function to multiply a G1 value(x,y) to value in an address
function g1_mulAccC(pR, x, y, s) {
let success
let mIn := mload(0x40)
mstore(mIn, x)
mstore(add(mIn, 32), y)
mstore(add(mIn, 64), s)
success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64)
if iszero(success) {
mstore(0, 0)
return(0, 0x20)
}
mstore(add(mIn, 64), mload(pR))
mstore(add(mIn, 96), mload(add(pR, 32)))
success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64)
if iszero(success) {
mstore(0, 0)
return(0, 0x20)
}
}
function checkPairing(pA, pB, pC, pubSignals, pMem) -> isOk {
let _pPairing := add(pMem, pPairing)
let _pVk := add(pMem, pVk)
mstore(_pVk, IC0x)
mstore(add(_pVk, 32), IC0y)
// Compute the linear combination vk_x
<% for (let i = 1; i <= nPublic; i++) { %>
g1_mulAccC(_pVk, IC<%=i%>x, IC<%=i%>y, calldataload(add(pubSignals, <%=(i-1)*32%>)))
<% } %>
// -A
mstore(_pPairing, calldataload(pA))
mstore(add(_pPairing, 32), mod(sub(q, calldataload(add(pA, 32))), q))
// B
mstore(add(_pPairing, 64), calldataload(pB))
mstore(add(_pPairing, 96), calldataload(add(pB, 32)))
mstore(add(_pPairing, 128), calldataload(add(pB, 64)))
mstore(add(_pPairing, 160), calldataload(add(pB, 96)))
// alpha1
mstore(add(_pPairing, 192), alphax)
mstore(add(_pPairing, 224), alphay)
// beta2
mstore(add(_pPairing, 256), betax1)
mstore(add(_pPairing, 288), betax2)
mstore(add(_pPairing, 320), betay1)
mstore(add(_pPairing, 352), betay2)
// vk_x
mstore(add(_pPairing, 384), mload(add(pMem, pVk)))
mstore(add(_pPairing, 416), mload(add(pMem, add(pVk, 32))))
// gamma2
mstore(add(_pPairing, 448), gammax1)
mstore(add(_pPairing, 480), gammax2)
mstore(add(_pPairing, 512), gammay1)
mstore(add(_pPairing, 544), gammay2)
// C
mstore(add(_pPairing, 576), calldataload(pC))
mstore(add(_pPairing, 608), calldataload(add(pC, 32)))
// delta2
mstore(add(_pPairing, 640), deltax1)
mstore(add(_pPairing, 672), deltax2)
mstore(add(_pPairing, 704), deltay1)
mstore(add(_pPairing, 736), deltay2)
let success := staticcall(sub(gas(), 2000), 8, _pPairing, 768, _pPairing, 0x20)
isOk := and(success, mload(_pPairing))
}
let pMem := mload(0x40)
mstore(0x40, add(pMem, pLastMem))
// Validate that all evaluations ∈ F
<% for (let i=0; i<nPublic; i++) { %>
checkField(calldataload(add(_pubSignals, <%=i*32%>)))
<% } %>
// Validate all evaluations
let isValid := checkPairing(_pA, _pB, _pC, _pubSignals, pMem)
mstore(0, isValid)
return(0, 0x20)
}
}
}