-
-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathmod.rs
438 lines (390 loc) · 14.3 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
//! HTTP Server
//!
//! A `Server` is created to listen on a port, parse HTTP requests, and hand
//! them off to a `Service`.
use std::cell::RefCell;
use std::fmt;
use std::io;
use std::net::SocketAddr;
use std::rc::{Rc, Weak};
use std::time::Duration;
use futures::future;
use futures::task::{self, Task};
use futures::{Future, Map, Stream, Poll, Async, Sink, StartSend, AsyncSink};
use tokio::io::Io;
use tokio::reactor::{Core, Handle, Timeout};
use tokio::net::TcpListener;
use tokio_proto::BindServer;
use tokio_proto::streaming::Message;
use tokio_proto::streaming::pipeline::{Transport, Frame, ServerProto};
pub use tokio_service::{NewService, Service};
pub use self::request::Request;
pub use self::response::Response;
use http;
mod request;
mod response;
/// An instance of the HTTP protocol, and implementation of tokio-proto's
/// `ServerProto` trait.
///
/// This structure is used to create instances of `Server` or to spawn off tasks
/// which handle a connection to an HTTP server. Each instance of `Http` can be
/// configured with various protocol-level options such as keepalive.
#[derive(Debug, Clone)]
pub struct Http {
keep_alive: bool,
}
/// An instance of a server created through `Http::bind`.
///
/// This server is intended as a convenience for creating a TCP listener on an
/// address and then serving TCP connections accepted with the service provided.
pub struct Server<S> {
protocol: Http,
new_service: S,
core: Core,
listener: TcpListener,
shutdown_timeout: Duration,
}
impl Http {
/// Creates a new instance of the HTTP protocol, ready to spawn a server or
/// start accepting connections.
pub fn new() -> Http {
Http {
keep_alive: true,
}
}
/// Enables or disables HTTP keep-alive.
///
/// Default is true.
pub fn keep_alive(&mut self, val: bool) -> &mut Self {
self.keep_alive = val;
self
}
/// Bind the provided `addr` and return a server ready to handle
/// connections.
///
/// This method will bind the `addr` provided with a new TCP listener ready
/// to accept connections. Each connection will be processed with the
/// `new_service` object provided as well, creating a new service per
/// connection.
///
/// The returned `Server` contains one method, `run`, which is used to
/// actually run the server.
pub fn bind<S>(&self, addr: &SocketAddr, new_service: S) -> ::Result<Server<S>>
where S: NewService<Request = Request, Response = Response, Error = ::Error> +
Send + Sync + 'static,
{
let core = try!(Core::new());
let handle = core.handle();
let listener = try!(TcpListener::bind(addr, &handle));
Ok(Server {
new_service: new_service,
core: core,
listener: listener,
protocol: self.clone(),
shutdown_timeout: Duration::new(1, 0),
})
}
/// Use this `Http` instance to create a new server task which handles the
/// connection `io` provided.
///
/// This is the low-level method used to actually spawn handling a TCP
/// connection, typically. The `handle` provided is the event loop on which
/// the server task will be spawned, `io` is the I/O object associated with
/// this connection (data that's read/written), `remote_addr` is the remote
/// peer address of the HTTP client, and `service` defines how HTTP requests
/// will be handled (and mapped to responses).
///
/// This method is typically not invoked directly but is rather transitively
/// used through the `serve` helper method above. This can be useful,
/// however, when writing mocks or accepting sockets from a non-TCP
/// location.
pub fn bind_connection<S, I>(&self,
handle: &Handle,
io: I,
remote_addr: SocketAddr,
service: S)
where S: Service<Request = Request, Response = Response, Error = ::Error> + 'static,
I: Io + 'static,
{
self.bind_server(handle, io, HttpService {
inner: service,
remote_addr: remote_addr,
})
}
}
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub struct ProtoRequest(http::RequestHead);
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub struct ProtoResponse(ResponseHead);
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub struct ProtoTransport<T>(http::Conn<T, http::ServerTransaction>);
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub struct ProtoBindTransport<T> {
inner: future::FutureResult<http::Conn<T, http::ServerTransaction>, io::Error>,
}
impl<T: Io + 'static> ServerProto<T> for Http {
type Request = ProtoRequest;
type RequestBody = http::Chunk;
type Response = ProtoResponse;
type ResponseBody = http::Chunk;
type Error = ::Error;
type Transport = ProtoTransport<T>;
type BindTransport = ProtoBindTransport<T>;
fn bind_transport(&self, io: T) -> Self::BindTransport {
let ka = if self.keep_alive {
http::KA::Busy
} else {
http::KA::Disabled
};
ProtoBindTransport {
inner: future::ok(http::Conn::new(io, ka)),
}
}
}
impl<T: Io + 'static> Sink for ProtoTransport<T> {
type SinkItem = Frame<ProtoResponse, http::Chunk, ::Error>;
type SinkError = io::Error;
fn start_send(&mut self, item: Self::SinkItem)
-> StartSend<Self::SinkItem, io::Error> {
let item = match item {
Frame::Message { message, body } => {
Frame::Message { message: message.0, body: body }
}
Frame::Body { chunk } => Frame::Body { chunk: chunk },
Frame::Error { error } => Frame::Error { error: error },
};
match try!(self.0.start_send(item)) {
AsyncSink::Ready => Ok(AsyncSink::Ready),
AsyncSink::NotReady(Frame::Message { message, body }) => {
Ok(AsyncSink::NotReady(Frame::Message {
message: ProtoResponse(message),
body: body,
}))
}
AsyncSink::NotReady(Frame::Body { chunk }) => {
Ok(AsyncSink::NotReady(Frame::Body { chunk: chunk }))
}
AsyncSink::NotReady(Frame::Error { error }) => {
Ok(AsyncSink::NotReady(Frame::Error { error: error }))
}
}
}
fn poll_complete(&mut self) -> Poll<(), io::Error> {
self.0.poll_complete()
}
}
impl<T: Io + 'static> Stream for ProtoTransport<T> {
type Item = Frame<ProtoRequest, http::Chunk, ::Error>;
type Error = io::Error;
fn poll(&mut self) -> Poll<Option<Self::Item>, io::Error> {
let item = match try_ready!(self.0.poll()) {
Some(item) => item,
None => return Ok(None.into()),
};
let item = match item {
Frame::Message { message, body } => {
Frame::Message { message: ProtoRequest(message), body: body }
}
Frame::Body { chunk } => Frame::Body { chunk: chunk },
Frame::Error { error } => Frame::Error { error: error },
};
Ok(Some(item).into())
}
}
impl<T: Io + 'static> Transport for ProtoTransport<T> {
fn tick(&mut self) {
self.0.tick()
}
fn cancel(&mut self) -> io::Result<()> {
self.0.cancel()
}
}
impl<T: Io + 'static> Future for ProtoBindTransport<T> {
type Item = ProtoTransport<T>;
type Error = io::Error;
fn poll(&mut self) -> Poll<ProtoTransport<T>, io::Error> {
self.inner.poll().map(|a| a.map(ProtoTransport))
}
}
struct HttpService<T> {
inner: T,
remote_addr: SocketAddr,
}
fn map_response_to_message(res: Response) -> Message<ProtoResponse, http::TokioBody> {
let (head, body) = response::split(res);
if let Some(body) = body {
Message::WithBody(ProtoResponse(head), body.into())
} else {
Message::WithoutBody(ProtoResponse(head))
}
}
type ResponseHead = http::MessageHead<::StatusCode>;
impl<T> Service for HttpService<T>
where T: Service<Request=Request, Response=Response, Error=::Error>,
{
type Request = Message<ProtoRequest, http::TokioBody>;
type Response = Message<ProtoResponse, http::TokioBody>;
type Error = ::Error;
type Future = Map<T::Future, fn(Response) -> Message<ProtoResponse, http::TokioBody>>;
fn call(&self, message: Self::Request) -> Self::Future {
let (head, body) = match message {
Message::WithoutBody(head) => (head.0, http::Body::empty()),
Message::WithBody(head, body) => (head.0, body.into()),
};
let req = request::new(self.remote_addr, head, body);
self.inner.call(req).map(map_response_to_message)
}
}
impl<S> Server<S>
where S: NewService<Request = Request, Response = Response, Error = ::Error>
+ Send + Sync + 'static,
{
/// Returns the local address that this server is bound to.
pub fn local_addr(&self) -> ::Result<SocketAddr> {
Ok(try!(self.listener.local_addr()))
}
/// Returns a handle to the underlying event loop that this server will be
/// running on.
pub fn handle(&self) -> Handle {
self.core.handle()
}
/// Configure the amount of time this server will wait for a "graceful
/// shutdown".
///
/// This is the amount of time after the shutdown signal is received the
/// server will wait for all pending connections to finish. If the timeout
/// elapses then the server will be forcibly shut down.
///
/// This defaults to 1s.
pub fn shutdown_timeout(&mut self, timeout: Duration) -> &mut Self {
self.shutdown_timeout = timeout;
self
}
/// Execute this server infinitely.
///
/// This method does not currently return, but it will return an error if
/// one occurs.
pub fn run(self) -> ::Result<()> {
self.run_until(future::empty())
}
/// Execute this server until the given future, `shutdown_signal`, resolves.
///
/// This method, like `run` above, is used to execute this HTTP server. The
/// difference with `run`, however, is that this method allows for shutdown
/// in a graceful fashion. The future provided is interpreted as a signal to
/// shut down the server when it resolves.
///
/// This method will block the current thread executing the HTTP server.
/// When the `shutdown_signal` has resolved then the TCP listener will be
/// unbound (dropped). The thread will continue to block for a maximum of
/// `shutdown_timeout` time waiting for active connections to shut down.
/// Once the `shutdown_timeout` elapses or all active connections are
/// cleaned out then this method will return.
pub fn run_until<F>(self, shutdown_signal: F) -> ::Result<()>
where F: Future<Item = (), Error = ::Error>,
{
let Server { protocol, new_service, mut core, listener, shutdown_timeout } = self;
let handle = core.handle();
// Mini future to track the number of active services
let info = Rc::new(RefCell::new(Info {
active: 0,
blocker: None,
}));
// Future for our server's execution
let srv = listener.incoming().for_each(|(socket, addr)| {
let s = NotifyService {
inner: try!(new_service.new_service()),
info: Rc::downgrade(&info),
};
info.borrow_mut().active += 1;
protocol.bind_connection(&handle, socket, addr, s);
Ok(())
});
// Main execution of the server. Here we use `select` to wait for either
// `incoming` or `f` to resolve. We know that `incoming` will never
// resolve with a success (it's infinite) so we're actually just waiting
// for an error or for `f`, our shutdown signal.
//
// When we get a shutdown signal (`Ok`) then we drop the TCP listener to
// stop accepting incoming connections.
match core.run(shutdown_signal.select(srv.map_err(|e| e.into()))) {
Ok(((), _incoming)) => {}
Err((e, _other)) => return Err(e),
}
// Ok we've stopped accepting new connections at this point, but we want
// to give existing connections a chance to clear themselves out. Wait
// at most `shutdown_timeout` time before we just return clearing
// everything out.
//
// Our custom `WaitUntilZero` will resolve once all services constructed
// here have been destroyed.
let timeout = try!(Timeout::new(shutdown_timeout, &handle));
let wait = WaitUntilZero { info: info.clone() };
match core.run(wait.select(timeout)) {
Ok(_) => Ok(()),
Err((e, _)) => return Err(e.into())
}
}
}
impl<S: fmt::Debug> fmt::Debug for Server<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Server")
.field("core", &"...")
.field("listener", &self.listener)
.field("new_service", &self.new_service)
.field("protocol", &self.protocol)
.finish()
}
}
struct NotifyService<S> {
inner: S,
info: Weak<RefCell<Info>>,
}
struct WaitUntilZero {
info: Rc<RefCell<Info>>,
}
struct Info {
active: usize,
blocker: Option<Task>,
}
impl<S: Service> Service for NotifyService<S> {
type Request = S::Request;
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn call(&self, message: Self::Request) -> Self::Future {
self.inner.call(message)
}
}
impl<S> Drop for NotifyService<S> {
fn drop(&mut self) {
let info = match self.info.upgrade() {
Some(info) => info,
None => return,
};
let mut info = info.borrow_mut();
info.active -= 1;
if info.active == 0 {
if let Some(task) = info.blocker.take() {
task.unpark();
}
}
}
}
impl Future for WaitUntilZero {
type Item = ();
type Error = io::Error;
fn poll(&mut self) -> Poll<(), io::Error> {
let mut info = self.info.borrow_mut();
if info.active == 0 {
Ok(().into())
} else {
info.blocker = Some(task::park());
Ok(Async::NotReady)
}
}
}