Skip to content
This repository has been archived by the owner on Mar 19, 2024. It is now read-only.

Commit

Permalink
Add geolocalization test to vissl (#510)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: #510

as title

Reviewed By: QuentinDuval

Differential Revision: D33794851

fbshipit-source-id: b2afc2ea908d21bd532ea02a8e233ca002724440
  • Loading branch information
prigoyal authored and facebook-github-bot committed Feb 1, 2022
1 parent 1260872 commit d372304
Show file tree
Hide file tree
Showing 4 changed files with 264 additions and 0 deletions.
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -9,3 +9,4 @@ parameterized==0.7.4
scikit-learn==0.24.1
submitit==1.3.3
tabulate==0.8.9
pandas
247 changes: 247 additions & 0 deletions tools/geolocalization_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,247 @@
# Copyright (c) Facebook, Inc. and its affiliates.

# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import os
import sys
from argparse import Namespace
from typing import Any, List

import pandas as pd
import torch
from hydra.experimental import compose, initialize_config_module
from iopath.common.file_io import g_pathmgr
from vissl.config import AttrDict
from vissl.data.dataset_catalog import get_data_files
from vissl.hooks import default_hook_generator
from vissl.utils.checkpoint import get_checkpoint_folder
from vissl.utils.distributed_launcher import launch_distributed
from vissl.utils.env import set_env_vars
from vissl.utils.hydra_config import convert_to_attrdict, is_hydra_available, print_cfg
from vissl.utils.io import load_file, save_file
from vissl.utils.logger import setup_logging, shutdown_logging


PARTITIONIG_MAP = {
"cells_50_5000": "coarse",
"cells_50_2000": "middle",
"cells_50_1000": "fine",
}


# Adapted from
# /~https://github.com/TIBHannover/GeoEstimation/blob/8dfc2a96741f496587fb598d9627b294058d4c28/classification/s2_utils.py#L20 # NOQA
class Partitioning:
def __init__(
self,
csv_file: str,
skiprows=2,
index_col="class_label",
col_class_label="hex_id",
col_latitute="latitude_mean",
col_longitude="longitude_mean",
):
"""
Required information in CSV:
- class_indexes from 0 to n
- respective class labels i.e. hexid
- latitude and longitude
"""
with g_pathmgr.open(csv_file, "r") as fopen:
self._df = pd.read_csv(fopen, index_col=index_col, skiprows=skiprows)
self._df = self._df.sort_index()

self._nclasses = len(self._df.index)
self._col_class_label = col_class_label
self._col_latitude = col_latitute
self._col_longitude = col_longitude

# map class label (hexid) to index
self._label2index = dict(
zip(self._df[self._col_class_label].tolist(), list(self._df.index))
)
self.name = os.path.splitext(os.path.basename(csv_file))[0]
self.shortname = PARTITIONIG_MAP[self.name]

def __len__(self):
return self._nclasses

def __repr__(self):
return f"{self.name} short: {self.shortname} n: {self._nclasses}"

def get_class_label(self, idx):
return self._df.iloc[idx][self._col_class_label]

def get_lat_lng(self, idx):
x = self._df.iloc[idx]
return float(x[self._col_latitude]), float(x[self._col_longitude])

def contains(self, class_label):
if class_label in self._label2index:
return True
return False

def label2index(self, class_label):
try:
return self._label2index[class_label]
except KeyError:
raise KeyError(f"unknown label {class_label} in {self}")


# Code from:
# /~https://github.com/TIBHannover/GeoEstimation/blob/8dfc2a96741f496587fb598d9627b294058d4c28/classification/utils_global.py#L66 # NOQA
def vectorized_gc_distance(latitudes, longitudes, latitudes_gt, longitudes_gt):
R = 6371
factor_rad = 0.01745329252
longitudes = factor_rad * longitudes
longitudes_gt = factor_rad * longitudes_gt
latitudes = factor_rad * latitudes
latitudes_gt = factor_rad * latitudes_gt
delta_long = longitudes_gt - longitudes
delta_lat = latitudes_gt - latitudes
subterm0 = torch.sin(delta_lat / 2) ** 2
subterm1 = torch.cos(latitudes) * torch.cos(latitudes_gt)
subterm2 = torch.sin(delta_long / 2) ** 2
subterm1 = subterm1 * subterm2
a = subterm0 + subterm1
c = 2 * torch.asin(torch.sqrt(a))
gcd = R * c
return gcd


# Code from:
# /~https://github.com/TIBHannover/GeoEstimation/blob/8dfc2a96741f496587fb598d9627b294058d4c28/classification/utils_global.py#L66 # NOQA
def gcd_threshold_eval(gc_dists, thresholds):
# calculate accuracy for given gcd thresolds
results = {}
for thres in thresholds:
results[thres] = torch.true_divide(
torch.sum(gc_dists <= thres), len(gc_dists)
).item()
return results


def geolocalization_test(cfg: AttrDict, layer_name: str = "heads", topk: int = 1):
output_dir = get_checkpoint_folder(cfg)
logging.info(f"Output dir: {output_dir} ...")

############################################################################
# Step 1: Load the mapping file and partition it
# Also load the test images and targets (latitude/longitude)
# lastly, load the model predictions
logging.info(
f"Loading the label partitioning file: {cfg.GEO_LOCALIZATION.TRAIN_LABEL_MAPPING}"
)
partitioning = Partitioning(cfg.GEO_LOCALIZATION.TRAIN_LABEL_MAPPING)

data_files, label_files = get_data_files("TEST", cfg.DATA)
test_image_paths = load_file(data_files[0])
target_lat_long = load_file(label_files[0])
logging.info(
f"Loaded val image paths: {test_image_paths.shape}, "
f"ground truth latitude/longitude: {target_lat_long.shape}"
)

prediction_image_indices_filepath = f"{output_dir}/rank0_test_{layer_name}_inds.npy"
predictions_filepath = f"{output_dir}/rank0_test_{layer_name}_predictions.npy"
predictions = load_file(predictions_filepath)
predictions_inds = load_file(prediction_image_indices_filepath)
logging.info(
f"Loaded predictions: {predictions.shape}, inds: {predictions_inds.shape}"
)

############################################################################
# Step 2: Convert the predicted classes to latitude/longitude and compute
# accuracy at different km thresholds.
gt_latitudes, gt_longitudes, predicted_lats, predicted_longs = [], [], [], []
output_metadata = {}
num_images = len(test_image_paths)
num_images = min(num_images, len(predictions))
for idx in range(num_images):
img_index = predictions_inds[idx]
inp_img_path = test_image_paths[img_index]
gt_latitude = float(target_lat_long[img_index][0])
gt_longitude = float(target_lat_long[img_index][1])
pred_cls = int(predictions[idx][:topk])
pred_lat, pred_long = partitioning.get_lat_lng(pred_cls)
output_metadata[inp_img_path] = {
"target_lat": gt_latitude,
"target_long": gt_longitude,
"pred_lat": pred_lat,
"pred_long": pred_long,
"pred_cls": pred_cls,
}
gt_latitudes.append(gt_latitude)
gt_longitudes.append(gt_longitude)
predicted_lats.append(pred_lat)
predicted_longs.append(pred_long)

predicted_lats = torch.tensor(predicted_lats, dtype=torch.float)
predicted_longs = torch.tensor(predicted_longs, dtype=torch.float)
gt_latitudes = torch.tensor(gt_latitudes, dtype=torch.float)
gt_longitudes = torch.tensor(gt_longitudes, dtype=torch.float)
distances = vectorized_gc_distance(
predicted_lats,
predicted_longs,
gt_latitudes,
gt_longitudes,
)

# accuracy for all distances (in km)
acc_dict = gcd_threshold_eval(
distances, thresholds=cfg.GEO_LOCALIZATION.ACC_KM_THRESHOLDS
)
gcd_dict = {}
for gcd_thres, acc in acc_dict.items():
gcd_dict[f"{gcd_thres}"] = round(acc * 100.0, 4)
logging.info(f"acc dist in percentage: {gcd_dict}")
save_file(
output_metadata,
f"{output_dir}/output_metadata_predictions.json",
append_to_json=False,
)
save_file(
gcd_dict,
f"{output_dir}/metrics.json",
append_to_json=False,
)
return output_metadata, acc_dict


def main(args: Namespace, config: AttrDict):
# setup logging
setup_logging(__name__)

# print the coniguration used
print_cfg(config)

# setup the environment variables
set_env_vars(local_rank=0, node_id=0, cfg=config)

# extract the label predictions on the test set
launch_distributed(
config,
args.node_id,
engine_name="extract_label_predictions",
hook_generator=default_hook_generator,
)

geolocalization_test(config)

# close the logging streams including the filehandlers
shutdown_logging()


def hydra_main(overrides: List[Any]):
with initialize_config_module(config_module="vissl.config"):
cfg = compose("defaults", overrides=overrides)
args, config = convert_to_attrdict(cfg)
main(args, config)


if __name__ == "__main__":
overrides = sys.argv[1:]
assert is_hydra_available(), "Make sure to install hydra"
hydra_main(overrides=overrides)
12 changes: 12 additions & 0 deletions vissl/config/defaults.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -1464,3 +1464,15 @@ config:
FEATURES:
# If empty, will run the extract features, if not, use the path to find the features
PATH: ""

# ----------------------------------------------------------------------------------- #
# Geo Localization (benchmark)
# ----------------------------------------------------------------------------------- #
GEO_LOCALIZATION:
# Benchmark Details:
# Step1: Take a model and extract the model label predictions on test data.
# Step2: Find the corresponding latitude/longitude predictions using the json mapping for train set.
# Step3: find the ground truth latitute/longitude and compute the metric following the code.
TRAIN_LABEL_MAPPING: "/path/to/.json"
# [1, 25, 200, 750, 2500] -> [street, city, region, country, continent]
ACC_KM_THRESHOLDS: [1, 25, 200, 750, 2500]
4 changes: 4 additions & 0 deletions vissl/utils/io.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from urllib.parse import urlparse

import numpy as np
import pandas as pd
import yaml
from iopath.common.download import download
from iopath.common.file_io import g_pathmgr, file_lock
Expand Down Expand Up @@ -130,6 +131,9 @@ def load_file(filename, mmap_mode=None):
elif file_ext == ".yaml":
with g_pathmgr.open(filename, "r") as fopen:
data = yaml.load(fopen, Loader=yaml.FullLoader)
elif file_ext == ".csv":
with g_pathmgr.open(filename, "r") as fopen:
data = pd.read_csv(fopen)
else:
raise Exception(f"Reading from {file_ext} is not supported yet")
return data
Expand Down

0 comments on commit d372304

Please sign in to comment.