This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 324
/
Copy patheval_voc_classif.py
293 lines (254 loc) · 10.3 KB
/
eval_voc_classif.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import os
import math
import time
import glob
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
import torch.optim
import torch.utils.data
import torchvision
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
from sklearn import metrics
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from util import AverageMeter, load_model
from eval_linear import accuracy
parser = argparse.ArgumentParser()
parser.add_argument('--vocdir', type=str, required=False, default='', help='pascal voc 2007 dataset')
parser.add_argument('--split', type=str, required=False, default='train', choices=['train', 'trainval'], help='training split')
parser.add_argument('--model', type=str, required=False, default='',
help='evaluate this model')
parser.add_argument('--nit', type=int, default=80000, help='Number of training iterations')
parser.add_argument('--fc6_8', type=int, default=1, help='If true, train only the final classifier')
parser.add_argument('--train_batchnorm', type=int, default=0, help='If true, train batch-norm layer parameters')
parser.add_argument('--eval_random_crops', type=int, default=1, help='If true, eval on 10 random crops, otherwise eval on 10 fixed crops')
parser.add_argument('--stepsize', type=int, default=5000, help='Decay step')
parser.add_argument('--lr', type=float, required=False, default=0.003, help='learning rate')
parser.add_argument('--wd', type=float, required=False, default=1e-6, help='weight decay')
parser.add_argument('--min_scale', type=float, required=False, default=0.1, help='scale')
parser.add_argument('--max_scale', type=float, required=False, default=0.5, help='scale')
parser.add_argument('--seed', type=int, default=31, help='random seed')
def main():
args = parser.parse_args()
print(args)
# fix random seeds
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
# create model and move it to gpu
model = load_model(args.model)
model.top_layer = nn.Linear(model.top_layer.weight.size(1), 20)
model.cuda()
cudnn.benchmark = True
# what partition of the data to use
if args.split == 'train':
args.test = 'val'
elif args.split == 'trainval':
args.test = 'test'
# data loader
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
dataset = VOC2007_dataset(args.vocdir, split=args.split, transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomResizedCrop(224, scale=(args.min_scale, args.max_scale), ratio=(1, 1)),
transforms.ToTensor(),
normalize,
]))
loader = torch.utils.data.DataLoader(dataset,
batch_size=16, shuffle=False,
num_workers=24, pin_memory=True)
print('PASCAL VOC 2007 ' + args.split + ' dataset loaded')
# re initialize classifier
for y, m in enumerate(model.classifier.modules()):
if isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.fill_(0.1)
model.top_layer.bias.data.fill_(0.1)
if args.fc6_8:
# freeze some layers
for param in model.features.parameters():
param.requires_grad = False
# unfreeze batchnorm scaling
if args.train_batchnorm:
for layer in model.modules():
if isinstance(layer, torch.nn.BatchNorm2d):
for param in layer.parameters():
param.requires_grad = True
# set optimizer
optimizer = torch.optim.SGD(
filter(lambda x: x.requires_grad, model.parameters()),
lr=args.lr,
momentum=0.9,
weight_decay=args.wd,
)
criterion = nn.BCEWithLogitsLoss(reduction='none')
print('Start training')
it = 0
losses = AverageMeter()
while it < args.nit:
it = train(
loader,
model,
optimizer,
criterion,
args.fc6_8,
losses,
it=it,
total_iterations=args.nit,
stepsize=args.stepsize,
)
print('Evaluation')
if args.eval_random_crops:
transform_eval = [
transforms.RandomHorizontalFlip(),
transforms.RandomResizedCrop(224, scale=(args.min_scale, args.max_scale), ratio=(1, 1)),
transforms.ToTensor(),
normalize,
]
else:
transform_eval = [
transforms.Resize(256),
transforms.TenCrop(224),
transforms.Lambda(lambda crops: torch.stack([normalize(transforms.ToTensor()(crop)) for crop in crops]))
]
print('Train set')
train_dataset = VOC2007_dataset(args.vocdir, split=args.split, transform=transforms.Compose(transform_eval))
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=1,
shuffle=False,
num_workers=24,
pin_memory=True,
)
evaluate(train_loader, model, args.eval_random_crops)
print('Test set')
test_dataset = VOC2007_dataset(args.vocdir, split=args.test, transform=transforms.Compose(transform_eval))
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=1,
shuffle=False,
num_workers=24,
pin_memory=True,
)
evaluate(test_loader, model, args.eval_random_crops)
def evaluate(loader, model, eval_random_crops):
model.eval()
gts = []
scr = []
for crop in range(9 * eval_random_crops + 1):
for i, (input, target) in enumerate(loader):
# move input to gpu and optionally reshape it
if len(input.size()) == 5:
bs, ncrops, c, h, w = input.size()
input = input.view(-1, c, h, w)
input = input.cuda(non_blocking=True)
# forward pass without grad computation
with torch.no_grad():
output = model(input)
if crop < 1 :
scr.append(torch.sum(output, 0, keepdim=True).cpu().numpy())
gts.append(target)
else:
scr[i] += output.cpu().numpy()
gts = np.concatenate(gts, axis=0).T
scr = np.concatenate(scr, axis=0).T
aps = []
for i in range(20):
# Subtract eps from score to make AP work for tied scores
ap = metrics.average_precision_score(gts[i][gts[i]<=1], scr[i][gts[i]<=1]-1e-5*gts[i][gts[i]<=1])
aps.append( ap )
print(np.mean(aps), ' ', ' '.join(['%0.2f'%a for a in aps]))
def train(loader, model, optimizer, criterion, fc6_8, losses, it=0, total_iterations=None, stepsize=None, verbose=True):
# to log
batch_time = AverageMeter()
data_time = AverageMeter()
top1 = AverageMeter()
end = time.time()
current_iteration = it
# use dropout for the MLP
model.train()
# in the batch norms always use global statistics
model.features.eval()
for (input, target) in loader:
# measure data loading time
data_time.update(time.time() - end)
# adjust learning rate
if current_iteration != 0 and current_iteration % stepsize == 0:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * 0.5
print('iter {0} learning rate is {1}'.format(current_iteration, param_group['lr']))
# move input to gpu
input = input.cuda(non_blocking=True)
# forward pass with or without grad computation
output = model(input)
target = target.float().cuda()
mask = (target == 255)
loss = torch.sum(criterion(output, target).masked_fill_(mask, 0)) / target.size(0)
# backward
optimizer.zero_grad()
loss.backward()
# clip gradients
torch.nn.utils.clip_grad_norm_(model.parameters(), 10)
# and weights update
optimizer.step()
# measure accuracy and record loss
losses.update(loss.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if verbose is True and current_iteration % 25 == 0:
print('Iteration[{0}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
current_iteration, batch_time=batch_time,
data_time=data_time, loss=losses))
current_iteration = current_iteration + 1
if total_iterations is not None and current_iteration == total_iterations:
break
return current_iteration
class VOC2007_dataset(torch.utils.data.Dataset):
def __init__(self, voc_dir, split='train', transform=None):
# Find the image sets
image_set_dir = os.path.join(voc_dir, 'ImageSets', 'Main')
image_sets = glob.glob(os.path.join(image_set_dir, '*_' + split + '.txt'))
assert len(image_sets) == 20
# Read the labels
self.n_labels = len(image_sets)
images = defaultdict(lambda:-np.ones(self.n_labels, dtype=np.uint8))
for k, s in enumerate(sorted(image_sets)):
for l in open(s, 'r'):
name, lbl = l.strip().split()
lbl = int(lbl)
# Switch the ignore label and 0 label (in VOC -1: not present, 0: ignore)
if lbl < 0:
lbl = 0
elif lbl == 0:
lbl = 255
images[os.path.join(voc_dir, 'JPEGImages', name + '.jpg')][k] = lbl
self.images = [(k, images[k]) for k in images.keys()]
np.random.shuffle(self.images)
self.transform = transform
def __len__(self):
return len(self.images)
def __getitem__(self, i):
img = Image.open(self.images[i][0])
img = img.convert('RGB')
if self.transform is not None:
img = self.transform(img)
return img, self.images[i][1]
if __name__ == '__main__':
main()