Contents
I ETOAUCTION. ¢ttt ettt ettt et a e st sat e b et st e bt e abe e st e sbe e b e e eabeeeaseesaneesaneesane 2
HIGRLIGRES. ..ttt ettt e st s bt e st e bt e st e s st e e s meeeesameeeenane 3
DaAta SIIUCTUTES.eeiuiiiiiiiiiiieiiiieeit ettt e ae e s b e e e sab e e s ba e e sbae s s aseesabteesssssnnneesens 4
VBTEEX ettt ettt ettt ettt e e ettt e e et e e e sttt e e e s bbb e e e s abbaee s e a st e e e e nbaeeeeaabb e e e e et beeeeanaaae e e ansttenaaaaeaees 4
BDD TT@E....coiiiiiiiiiiiiettect et e e s aa s e e e s e 4
10 (- OO OO PR PSP SORPPUPPRRRRPPPPPRRRN 4
TADLE Uttt ettt st b ettt b et st b et st ene s 4
TADIE Vet ettt et e st e et e e st e e et b e e et e e e bt e enabaeenabae e abae e rbaeenaaaeeeannns 4
OPETALIONS. c...eeiiiiiiiiite ettt et bb e e s e e s ba e e s ba e s s bt e s abeessabeesabeessnbeesanneeens 5
COMSITUCTION. ¢ tteeeeeiitee e ettt e ettt e e et e e ettt e e sttt e eesasateessasbaeeesssaeeessassaeessssaaeessssaeeesnnssaeessssnnns 5
A DL et sttt b e s ht e s b e e et e e bt e s h b e e b e e s abe e e e htaeeeataeeenraeeas 5
ROSITICE. ettt ettt ettt ettt e ettt e e s sttt e e e sttt e e e e aba e e e ssasaaaeesasbaeeesasteeessassaaaaaaaaesssnnns 7
N |) O PO PP PP PPP PP RPPPPPON 8
GarDage COILBCTION.uiiieiiiieiieeie ettt te st e e sbe e e s be e s sabeessaaeesnseesateesnsseesnsnsaaesssnnnns 11
Dynamic variable OrAeIing..........ccceueruierieriinirierieteee ettt ettt et sb et s e sre e s b e e s e e 12
DI LASKS. ..t eutteeiiieeiteete ettt e e e e e st e e st e e e s ate e s st e e s abe e e st e e e ab e e s at e e e btaeeeenatbaaeeseeanraaeeeans 13
Saving/Loading BDDS.......ccccooiiiiiiiiiieeienieeenteett ettt ettt ettt et s 13
Parallel algorithm........cccuiiiiiiiiieeeeecee ettt st e s e s are e s e e e s aeae s 13
High-efficient implementation............ccoeirieriiririinieeeeteeeteee ettt 13
21 0) FT a0 0] 1 2O OO O OO PPPPRRTR 14

Introduction

This document gives a summary explanation of some topics of the Binary Decision Diagram library
developed in Java 7.

Me, Diego J. Romero-Ldépez is the author of this BDD package.

This document is short (in-progress) manual working as a launchpad for developers that want to use
this package.

Highlights
We don't use a explicit reduce operation. Our BDD is reduced when constructed. So we enforce the

properties of uniqueness and non-redundantness of the vertices when constructing the BDD.

Our BDDs are based on the tables T and U described in [1]. Thus, the operations implemented in
this library are described in [1]. We could say that [1] is a big influence of our library is in this
paper of Andersen. You are encouraged to read it.

What be use is some heuristic reducing methods that try to guess the best variable ordering, that is,
the variable ordering that makes the BDD minimal.

Data structures

Vertex
The vertex is composed of the following attributes:

* index: an unique index for this vertex. The way we get the indices, they are not repeated
anytime.

* variable: an index to the variable that contains this vertex.
* low: areference to the low vertex.

* high: a reference to the high vertex.

* num_parents: reference counting of this vertex.

¢ num_rooted_bdds: number of BDDs that have this vertex as root

BDD Tree

The basic structure we use is a vertex tree with some enhancements.

This tree contains three hash tables that reference to vertices. This way, we will have to use vertex
reference counters before deciding on deleting the vertex.

Table T

The first hash table contains a hash whose keys are the indices of each vertex and its values,
references to its vertices.

It is used to keep count of the vertices and as vertex cache, easing the transversal of the tree.

Table U

The uniqueness table. This hash has as key a concatenation of the attributes that makes unique one
vertex, that is:

e variable: variable index of the vertex.

* lowid: id of the low descendant. If our vertex is a leaf, thus making the high descendant a
null, we replace it with a constant.

* highid: id of the high descendant. If our vertex is a leaf, thus making the high descendant a
null, we replace it with a constant.

This table is used to enforce the uniqueness of each vertex when adding new vertices in the
construction of the BDD or when using the apply operation.

Table V

Contains the vertices in groups by variables. That is, the key is the index variable and the value is a
set of vertices.

At this moment this structure is not used for anything. We have some plans to use it in a heuristic
variable ordering algorithm.

Operations

Construction

The construction uses the apply operation and a grammar parser' which is faster than the recursive
process. This algorithm constructs the BDD making use of the apply operation between the internal
formulas and variables of the formula. The basic BDDs that contains one wvariable (or a
complemented variable) will be constructed with a private static factory with the name of
BDD. factoryFromVarible.

If you want to change that, set BDD.USE_APPLY IN CREATION to false.

Apply

The apply algorithm is based on the implementation given by [3].

Constructs a new unique key to one vertex
makeUniqueKey(var index, low, high):
if(low==null && high==null):
return var_index+"-"+"NULL"+"-"+"NULL";

return var_index+"-"+low.index+"-"+high.index

Adds a unique vertex to the hash tables
addNewVertex(var index, low, high):
Gets the next key, increments a global counter and gets its value
index = getNextKey()
v = new Vertex(index, var_index, low, high)
T[index] = v
U[makeUniqueKey(var index, low, high)] = v
V[var_index].add(v)

return v

Adds a non-redundant vertex to the hash tables
addVertex(var, low, high):
vertexUniqueKey = makeUniqueKey(var index, low, high)
if(uniqueKey in U):
return U[uniqueKey]
return addNewVertex(var, low, high)

Apply algorithm to two vertices
applyVertices(Vertex vl1l, Vertex v2):

1 This parser uses Antlr3 (http:/www.antlr.org/wiki/display/ANTLR3/ANTLR+3+Wiki+Home)

http://www.antlr.org/wiki/display/ANTLR3/ANTLR+3+Wiki+Home

Hash key of the computation of the subtree of these two vertices
String key = "1-" + vl.index + "+2-" + v2.index
if(key in G):

return G[key]

if(vl.islLeaf() && v2.islLeaf()):
op is the boolean operation between two leaf vertices
that is true and false
if(op(vl,v2)):
return True # Constant leaf vertex true
return False # Constant leaf vertex false

var = -1
low = null
high = null

// vl.index < v2.index

if (!'vl.islLeaf() and (v2.islLeaf() or vl.variable < v2.variable)):
var = vl.variable;
low = applyVertex(vl.low, v2)
high = applyVertex(vl.high, v2)

else if (vl.isLeaf() or vl.variable > v2.variable):

var = v2.variable

low = applyVertex(vl, v2.low)
high = applyVertex(vl, v2.high)
else:
var = vl.variable
low = applyVertex(vl.low, v2.low)

high = applyVertex(vl.high, v2.high)

// Respect the non-redundant property:
// "No vertex shall be one whose low and high indices are the same."
if(low.index == high.index):

return low

// Respect the uniqueness property:

// "No vertex shall be one that contains same variable,
// low, high indices as other."

Vertex u = addVertex(var, low, high)

G[key] = u

return u;

Main call to apply algorithm
apply(operation, bddl, bdd2):
Operation is global
Cache to avoid repeated computations
G ={}
String function = bddl.function + “ “+operation+“ “+bdd2.function
Fill this.T with vertices of bddl and bdd2
root = appyVertex(bddl.root, bdd2.root)
Construction of new BDD
bdd = new BDD(function, root)
return bdd

Restrict

Restrict operation assigns boolean values to some variables, thus restricting the path from the tree
and obtaining a new one.

Get a new root vertex of a BDD based on this BDD
with a boolean assignement on some variables.
restrictFromVertex(v, assignement):
if(v.isLeaf()):
There is only one true (index 1) and one false vertex (index 0)
return T[v.index]
if(v.variable in assignement):
boolean value = assignement[v.variable]
if(value):
return restrictFromVertex(v.high, assignement)
else:
return restrictFromVertex(v.low, assignement)
else:
low = restrictFromVertex(v.low, assignement)
high = restrictFromVertex(v.high, assignement)
if(low.index == high.index)
return low

return addVertex(v.variable, low, high)

Get a new BDD based on this BDD with a boolean assignement on some variables.
restrict(bdd, assignement):
restrictedBDD = restrictFromVertex(bdd.root, assignement);

rfunction = bdd.function
for(pair : assignement.pairs()):

variable = VARIABLES[pair.key]

value = pair.value

rfunction = rfunction.replace(variable, value)
return new BDD(rfunction, restrictedBDD)

Swap

This operation swaps tow levels of the tree. Our aim is to obtain some orphan vertices, thus they can
be deleted.

This operation is ignored in most of the papers and they point to [6] for more information. This
paper can be complemented with the notes of the same author from [7]. I recommend read these
papers and later, read another one that will clear completely your doubts about the implementation

[8].
Our implementation is similar to [8] so you should understand it without any problems.
swapVertex(Vertex v, int varl):

swapWasMade = false

varl = v.variable

low = v.low

high = v.high

= null
B = null
if (!low.isLeaf()):
A = low.low
B = low.high
else:
= low
B = low
= null
D = null
if ('high.islLeaf())
C = high.low()
D = high.high()
else:
= high
= high

newLow = null
newHigh = null

// Case a:
if (low != null && low.variable == var] &&
(high == null || high.variable != varl)):
newLow = addWithoutRedundant(varI, A, C)
newHigh = addWithoutRedundant(varI, B, ()
setVertex(v, varl, newLow, newHigh)
swapWasMade = true
// Case b:
else if ((low == null || low.variable != varl) &&
(high '= null && high.variable == varl)):
newLow = addwWithoutRedundant(varI, A, B)
newHigh = addWithoutRedundant(varI, A, ()
setVertex(v, varJ, newLow, newHigh)
swapWasMade = true
// Case c:
else if ((low != null && low.variable == var]) &&
(high '= null && high.variable == varl)):
newLow = addwWithoutRedundant(varI, A, C)
newHigh = addWithoutRedundant(varI, B, D)
this.setVertex(v, varl, newLow, newHigh)
swapWasMade = true
// Case d:
else if ((low == null || low.variable != var]) &&
(high == null || high.variable != varl)):
swapWasMade = false
// Case e:
else if ((low == null || low.variable != var]) && high == null):
swapWasMade = false

return swapWasMade

swap(int level):

// If is the last level, ignore
if(level == variables.size()-1)
return false

variablel variables.getVariableInPosition(level)

variablel variables.getVariableInPosition(level+1)

boolean swapWasMade = false

V[variableI]
for(Vertex v : verticesOfThisLevel):

verticesOfThisLevel

swapWasMade = swapWasMade || swapVertex(v, variablel)

variables.swap(variablel, variablel);
return swapWasMade

10

Garbage collection

The garbage collection can be called using BDD. gc. Note that this garbage collection compacts table
T, erasing the pairs <index, Vertex> where the vertex is not referenced by other vertices and is not
root of any BDD.

The deletion is applied for each vertex while there has been some deletions. Some upgrades to this
methods are

* Parallelizing the vertex loop.

* Keeping track of the ancestors of each vector for a more efficient way of repeating the
vertex loop.

11

Dynamic variable ordering

Our methods are based on the variable swapping operation. They are heuristics that try to find the
best possible variable ordering, that is, the variable ordering that makes the number of vertices of
the BDD minimal.

This is a NP complete problem and there are many possible solutions. We have implemented these
algorithms:

Sifting Algorithm, described by Rudell in [6].

Windom Permutation Algorithm, main Rudell method's competitor [6].

Random Swapper Reduction: iterates and in each iteration swaps to levels of vertices.
Genetic Algorithm, based on [9].

Memetic Algorithm, based on the Genetic Algorithm from [9].

Iterative Sifting, our original method, described in [10].

12

Open tasks

There are some tasks that have not been finished.

Saving/Loading BDDs

Developing a file format to store and load BDDs from disk. Nowadays, the BDDs must be hard-
coded, introduced as DIMACS files or C expressions.

Parallel algorithm

One of my aims is making this implementation run on shared memory environments.

High-efficient implementation

Other of our objectives is implementing this same library in C++ or D to make the BDD
construction and dynamic reduction more efficient.

13

Bibliography
[1] An introduction to binary decision diagrams, Henrik Reif Andersen.

[2] Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams, Randal E. Bryant.
Carnegie Mellon University.

[3] Binary Decision Diagrams. Fabio Somenzi. Department of Electrical and Computer
Engineering. University of Colorado at Boulder.

[4] Efficient implementation of a BDD package, Karl S. Brace, Richard L. Rudell, Randal E.
Bryant.

[5] Implementation of an Efficient Parallel BDD Package. Tony Stornetta, Forrest Brewer.

[6] Dynamic variable ordering for ordered binary decision diagrams. Richard L. Rudell 1993.
[7] BDDs: Implementation Issues & Variable Ordering. Richard Rudell 1993.

[8] Incremental Reduction of Binary Decision Diagrams. R. Jacobi, N. Calazans, C. Trullemans.

[9] Genetic Algorithms for the Variable Ordering Problem of Binary Decision Diagrams,
Foundations of Genetic Algorithms (pp. 1-20). Springer Berlin Heidelberg, 2008. W. Lenders & C.
Baier.

[10] Iterative Sifting: A new approach to reduce BDD size. Diego J. Romero-Lépez & Elena Ruiz-
Larrocha. TBA.

14

