Skip to content

Commit

Permalink
Repo layout (adding logs, models, indexes, runs), MS MARCO passage re…
Browse files Browse the repository at this point in the history
…plication doc (#24)

* create docs, indexes, logs, models, runs and add MS Marco official eval

* remove index-dir from settings for added clarity

* index-dir bf2

* index-dir bf3

* index-dir bf4

* done doc

* fix typos

* fix typos 2

* fix heading

* Update docs/experiments-msmarco-passage.md

Co-authored-by: Rodrigo Frassetto Nogueira <rodrigonogueira4@gmail.com>

* Update experiments-msmarco-passage.md

resolve comments

Co-authored-by: Rodrigo Frassetto Nogueira <rodrigonogueira4@gmail.com>
  • Loading branch information
ronakice and rodrigonogueira4 authored May 22, 2020
1 parent 2905235 commit 69de7db
Show file tree
Hide file tree
Showing 8 changed files with 357 additions and 9 deletions.
162 changes: 162 additions & 0 deletions docs/experiments-msmarco-passage.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,162 @@
# PyGaggle: Neural Ranking Baselines on [MS MARCO Passage Retrieval](/~https://github.com/microsoft/MSMARCO-Passage-Ranking)

This page contains instructions for running various neural reranking baselines on the MS MARCO *passage* ranking task.
Note that there is also a separate [MS MARCO *document* ranking task](/~https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-doc.md).

Prior to running this, we suggest looking at our first-stage [BM25 ranking instructions](/~https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-passage.md).
We rerank the BM25 run files that contain ~1000 passages per query using both monoBERT and monoT5.
monoBERT and monoT5 are pointwise rerankers. This means that each document is scored independently using either BERT or T5 respectively.

Since it can take many hours to run these models on all of the 6980 queries from the MS MARCO dev set, we will instead use a subset of 105 queries randomly sampled from the dev set.
Running these instructions with the entire MS MARCO dev set should give about the same results as that in the corresponding paper.

Note 1: Run the following instructions at root of this repo.
Note 2: Installation must have been done from source.
Note 3: Make sure that you have access to a GPU

## Models

+ monoBERT-Large: Passage Re-ranking with BERT [(Nogueira et al., 2019)](https://arxiv.org/pdf/1901.04085.pdf)
+ monoT5-base: Document Ranking with a Pretrained Sequence-to-Sequence Model [(Nogueira et al., 2020)](https://arxiv.org/pdf/2003.06713.pdf)

## Data Prep

We're first going to download the queries, qrels and run files corresponding to the MS MARCO set considered. The run file is generated by following the BM25 ranking instructions. We'll store all these files in the `data` directory.

```
wget https://www.dropbox.com/s/5xa5vjbjle0c8jv/msmarco_ans_small.zip -P data
```

To confirm, `msmarco_ans_small.zip` should have MD5 checksum of `65d8007bfb2c72b5fc384738e5572f74`.

Next, we extract the contents into `data`.

```
unzip msmarco_ans_small.zip -d data
```

As a sanity check, we can evaluate the first-stage retrieved documents using the official MS MARCO evaluation script.

```
python evaluate/msmarco/msmarco_eval.py data/msmarco_ans_small/qrels.dev.small.tsv data/msmarco_ans_small/run.dev.small.tsv
```

The output should be:

```
#####################
MRR @10: 0.15906651549508694
QueriesRanked: 105
#####################
```

Let's download and extract the pre-built MS MARCO index into `indexes`:

```
wget https://git.uwaterloo.ca/jimmylin/anserini-indexes/raw/master/index-msmarco-passage-20191117-0ed488.tar.gz -P indexes
tar xvfz indexes/index-msmarco-passage-20191117-0ed488.tar.gz -C indexes
```

## Model Prep

Let's download and extract monoBERT into `models`:

```
wget https://www.dropbox.com/s/jr0hpksboh7pa48/monobert_msmarco_large.zip -P models
unzip models/monobert_msmarco_large.zip -d models
```

While running the re-ranking script with the monoT5 model, it is automatically downloaded from Google Cloud Storage.

Now, we can begin with re-ranking the set.

## Re-Ranking with monoBERT

First, lets evaluate using monoBERT!

```
python -um pygaggle.run.evaluate_passage_ranker --split dev \
--method seq_class_transformer \
--model-name-or-path models/monobert_msmarco_large \
--data-dir data/msmarco_ans_small/ \
--index-dir indexes/index-msmarco-passage-20191117-0ed488 \
--dataset msmarco \
--output-file runs/run.monobert.ans_small.dev.tsv
```

Upon completion, the following output will be visible:

```
precision@1 0.2761904761904762
recall@3 0.42698412698412697
recall@50 0.8174603174603176
recall@1000 0.8476190476190476
mrr 0.41089693612003686
mrr@10 0.4026795162509449
```

It takes about ~52 minutes to re-rank this subset on MS MARCO using a P100.
The type of GPU will directly influence your inference time.
It is possible that the default batch results in a GPU OOM error.
In this case, assigning a batch size (using option `--batch-size`) which is smaller than the default (96) should help!

The re-ranked run file `run.monobert.ans_small.dev.tsv` will also be available in the `runs` directory upon completion.

We can use the official MS MARCO evaluation script to verify the MRR@10:

```
python evaluate/msmarco/msmarco_eval.py data/msmarco_ans_small/qrels.dev.small.tsv runs/run.monobert.ans_small.dev.tsv
```

You should see the same result. Great, let's move on to monoT5!

## Re-Ranking with monoT5

We use the monoT5-base variant as it is the easiest to run without access to larger GPUs/TPUs. Let us now re-rank the set:

```
python -um pygaggle.run.evaluate_passage_ranker --split dev \
--method t5 \
--model-name-or-path gs://neuralresearcher_data/doc2query/experiments/367 \
--data-dir data/msmarco_ans_small \
--model-type t5-base \
--dataset msmarco \
--index-dir indexes/index-msmarco-passage-20191117-0ed488 \
--batch-size 32 \
--output-file runs/run.monot5.ans_small.dev.tsv
```

The following output will be visible after it has finished:

```
precision@1 0.26666666666666666
recall@3 0.4603174603174603
recall@50 0.8063492063492063
recall@1000 0.8476190476190476
mrr 0.3973368360121561
mrr@10 0.39044217687074834
```

It takes about ~13 minutes to re-rank this subset on MS MARCO using a P100.
It is worth noting again that you might need to modify the batch size to best fit the GPU at hand.

Upon completion, the re-ranked run file `run.monot5.ans_small.dev.tsv` will be available in the `runs` directory.

We can use the official MS MARCO evaluation script to verify the MRR@10:

```
python evaluate/msmarco/msmarco_eval.py data/msmarco_ans_small/qrels.dev.small.tsv runs/run.monot5.ans_small.dev.tsv
```

You should see the same result.

If you were able to replicate any of these results, please submit a PR adding to the replication log!


## Replication Log

### monoBERT
+

### monoT5
+
183 changes: 183 additions & 0 deletions evaluate/msmarco/msmarco_eval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
"""
This module computes evaluation metrics for MSMARCO dataset on the ranking task.
Command line:
python msmarco_eval_ranking.py <path_to_reference_file> <path_to_candidate_file>
Creation Date : 06/12/2018
Last Modified : 1/21/2019
Authors : Daniel Campos <dacamp@microsoft.com>, Rutger van Haasteren <ruvanh@microsoft.com>
"""
import sys
import statistics

from collections import Counter

MaxMRRRank = 10

def load_reference_from_stream(f):
"""Load Reference reference relevant passages
Args:f (stream): stream to load.
Returns:qids_to_relevant_passageids (dict): dictionary mapping from query_id (int) to relevant passages (list of ints).
"""
qids_to_relevant_passageids = {}
for l in f:
try:
l = l.strip().split('\t')
qid = int(l[0])
if qid in qids_to_relevant_passageids:
pass
else:
qids_to_relevant_passageids[qid] = []
qids_to_relevant_passageids[qid].append(int(l[2]))
except:
raise IOError('\"%s\" is not valid format' % l)
return qids_to_relevant_passageids

def load_reference(path_to_reference):
"""Load Reference reference relevant passages
Args:path_to_reference (str): path to a file to load.
Returns:qids_to_relevant_passageids (dict): dictionary mapping from query_id (int) to relevant passages (list of ints).
"""
with open(path_to_reference,'r') as f:
qids_to_relevant_passageids = load_reference_from_stream(f)
return qids_to_relevant_passageids

def load_candidate_from_stream(f):
"""Load candidate data from a stream.
Args:f (stream): stream to load.
Returns:qid_to_ranked_candidate_passages (dict): dictionary mapping from query_id (int) to a list of 1000 passage ids(int) ranked by relevance and importance
"""
qid_to_ranked_candidate_passages = {}
for l in f:
try:
l = l.strip().split('\t')
qid = int(l[0])
pid = int(l[1])
rank = int(l[2])
if qid in qid_to_ranked_candidate_passages:
pass
else:
# By default, all PIDs in the list of 1000 are 0. Only override those that are given
tmp = [0] * 1000
qid_to_ranked_candidate_passages[qid] = tmp
qid_to_ranked_candidate_passages[qid][rank-1]=pid
except:
raise IOError('\"%s\" is not valid format' % l)
return qid_to_ranked_candidate_passages

def load_candidate(path_to_candidate):
"""Load candidate data from a file.
Args:path_to_candidate (str): path to file to load.
Returns:qid_to_ranked_candidate_passages (dict): dictionary mapping from query_id (int) to a list of 1000 passage ids(int) ranked by relevance and importance
"""

with open(path_to_candidate,'r') as f:
qid_to_ranked_candidate_passages = load_candidate_from_stream(f)
return qid_to_ranked_candidate_passages

def quality_checks_qids(qids_to_relevant_passageids, qids_to_ranked_candidate_passages):
"""Perform quality checks on the dictionaries
Args:
p_qids_to_relevant_passageids (dict): dictionary of query-passage mapping
Dict as read in with load_reference or load_reference_from_stream
p_qids_to_ranked_candidate_passages (dict): dictionary of query-passage candidates
Returns:
bool,str: Boolean whether allowed, message to be shown in case of a problem
"""
message = ''
allowed = True

# Create sets of the QIDs for the submitted and reference queries
candidate_set = set(qids_to_ranked_candidate_passages.keys())
ref_set = set(qids_to_relevant_passageids.keys())

# Check that we do not have multiple passages per query
for qid in qids_to_ranked_candidate_passages:
# Remove all zeros from the candidates
duplicate_pids = set([item for item, count in Counter(qids_to_ranked_candidate_passages[qid]).items() if count > 1])

if len(duplicate_pids-set([0])) > 0:
message = "Cannot rank a passage multiple times for a single query. QID={qid}, PID={pid}".format(
qid=qid, pid=list(duplicate_pids)[0])
allowed = False

return allowed, message

def compute_metrics(qids_to_relevant_passageids, qids_to_ranked_candidate_passages):
"""Compute MRR metric
Args:
p_qids_to_relevant_passageids (dict): dictionary of query-passage mapping
Dict as read in with load_reference or load_reference_from_stream
p_qids_to_ranked_candidate_passages (dict): dictionary of query-passage candidates
Returns:
dict: dictionary of metrics {'MRR': <MRR Score>}
"""
all_scores = {}
MRR = 0
qids_with_relevant_passages = 0
ranking = []
for qid in qids_to_ranked_candidate_passages:
if qid in qids_to_relevant_passageids:
ranking.append(0)
target_pid = qids_to_relevant_passageids[qid]
candidate_pid = qids_to_ranked_candidate_passages[qid]
for i in range(0,MaxMRRRank):
if candidate_pid[i] in target_pid:
MRR += 1/(i + 1)
ranking.pop()
ranking.append(i+1)
break
if len(ranking) == 0:
raise IOError("No matching QIDs found. Are you sure you are scoring the evaluation set?")

MRR = MRR/len(qids_to_relevant_passageids)
all_scores['MRR @10'] = MRR
all_scores['QueriesRanked'] = len(qids_to_ranked_candidate_passages)
return all_scores

def compute_metrics_from_files(path_to_reference, path_to_candidate, perform_checks=True):
"""Compute MRR metric
Args:
p_path_to_reference_file (str): path to reference file.
Reference file should contain lines in the following format:
QUERYID\tPASSAGEID
Where PASSAGEID is a relevant passage for a query. Note QUERYID can repeat on different lines with different PASSAGEIDs
p_path_to_candidate_file (str): path to candidate file.
Candidate file sould contain lines in the following format:
QUERYID\tPASSAGEID1\tRank
If a user wishes to use the TREC format please run the script with a -t flag at the end. If this flag is used the expected format is
QUERYID\tITER\tDOCNO\tRANK\tSIM\tRUNID
Where the values are separated by tabs and ranked in order of relevance
Returns:
dict: dictionary of metrics {'MRR': <MRR Score>}
"""

qids_to_relevant_passageids = load_reference(path_to_reference)
qids_to_ranked_candidate_passages = load_candidate(path_to_candidate)
if perform_checks:
allowed, message = quality_checks_qids(qids_to_relevant_passageids, qids_to_ranked_candidate_passages)
if message != '': print(message)

return compute_metrics(qids_to_relevant_passageids, qids_to_ranked_candidate_passages)

def main():
"""Command line:
python msmarco_eval_ranking.py <path_to_reference_file> <path_to_candidate_file>
"""

if len(sys.argv) == 3:
path_to_reference = sys.argv[1]
path_to_candidate = sys.argv[2]
metrics = compute_metrics_from_files(path_to_reference, path_to_candidate)
print('#####################')
for metric in sorted(metrics):
print('{}: {}'.format(metric, metrics[metric]))
print('#####################')

else:
print('Usage: msmarco_eval_ranking.py <reference ranking> <candidate ranking>')
exit()

if __name__ == '__main__':
main()
1 change: 1 addition & 0 deletions indexes/.gitkeep
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
# This is the default directory for indexes. Placeholder so that directory is kept in git.
1 change: 1 addition & 0 deletions logs/.gitkeep
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
# This is the default directory for logs. Placeholder so that directory is kept in git.
1 change: 1 addition & 0 deletions models/.gitkeep
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
# This is the default directory for models. Placeholder so that directory is kept in git.
Loading

0 comments on commit 69de7db

Please sign in to comment.