Skip to content

Commit

Permalink
Add regressions for DeepImpact and uniCOIL on MS MARCO passage (#1633)
Browse files Browse the repository at this point in the history
  • Loading branch information
lintool authored Sep 5, 2021
1 parent 9bc0a1c commit f79fb67
Show file tree
Hide file tree
Showing 12 changed files with 482 additions and 5 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@ For the most part, these runs are based on [_default_ parameter settings](https:
+ Regressions for [Tweets2011 (MB11 & MB12)](docs/regressions-mb11.md), [Tweets2013 (MB13 & MB14)](docs/regressions-mb13.md)
+ Regressions for Complex Answer Retrieval (CAR17): [[v1.5](docs/regressions-car17v1.5.md)] [[v2.0](docs/regressions-car17v2.0.md)] [[v2.0 with doc2query](docs/regressions-car17v2.0-doc2query.md)]
+ Regressions for MS MARCO Passage Ranking: [[base](docs/regressions-msmarco-passage.md)] [[doc2query](docs/regressions-msmarco-passage-doc2query.md)] [[docTTTTTquery](docs/regressions-msmarco-passage-docTTTTTquery.md)]
+ Regressions for MS MARCO Passage Ranking: [[DeepImpact](docs/regressions-msmarco-passage-deepimpact.md)] [[uniCOIL](docs/regressions-msmarco-passage-unicoil.md)]
+ Regressions for MS MARCO Document Ranking, Per Doc: [[base](docs/regressions-msmarco-doc.md)] [[docTTTTTquery](docs/regressions-msmarco-doc-docTTTTTquery-per-doc.md)]
+ Regressions for MS MARCO Document Ranking, Per Passage: [[base](docs/regressions-msmarco-doc-per-passage.md)] [[docTTTTTquery](docs/regressions-msmarco-doc-docTTTTTquery-per-passage.md)]
+ Regressions for the TREC 2019 Deep Learning Track (Passage): [[base](docs/regressions-dl19-passage.md)] [[docTTTTTquery](docs/regressions-dl19-passage-docTTTTTquery.md)]
Expand Down
8 changes: 4 additions & 4 deletions docs/experiments-msmarco-passage-deepimpact.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ We're going to use the repository's root directory as the working directory.
First, we need to download and extract the MS MARCO passage dataset with DeepImpact processing:

```bash
wget https://git.uwaterloo.ca/jimmylin/deep-impact/raw/master/msmarco-passage-deepimpact-b8.tar -P collections/
wget https://git.uwaterloo.ca/jimmylin/deepimpact/raw/master/msmarco-passage-deepimpact-b8.tar -P collections/

# Alternate mirror
wget https://vault.cs.uwaterloo.ca/s/57AE5aAjzw2ox2n/download -O collections/msmarco-passage-deepimpact-b8.tar
Expand Down Expand Up @@ -51,16 +51,16 @@ The queries are already stored in the repo, so we can run retrieval directly:

```bash
target/appassembler/bin/SearchCollection -index indexes/lucene-index.msmarco-passage-deepimpact-b8 \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.msmarco-passage.dev-subset.deep-impact.tsv.gz \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.msmarco-passage.dev-subset.deepimpact.tsv.gz \
-output runs/run.msmarco-passage-deepimpact-b8.trec \
-impact -pretokenized
```

The queries are also available to download at the following locations:

```bash
wget https://git.uwaterloo.ca/jimmylin/deep-impact/raw/master/topics.msmarco-passage.dev-subset.deep-impact.tsv.gz -P collections/
wget https://vault.cs.uwaterloo.ca/s/NYibRJ9bXs5PspH/download -O collections/topics.msmarco-passage.dev-subset.deep-impact.tsv.gz
wget https://git.uwaterloo.ca/jimmylin/deepimpact/raw/master/topics.msmarco-passage.dev-subset.deepimpact.tsv.gz -P collections/
wget https://vault.cs.uwaterloo.ca/s/NYibRJ9bXs5PspH/download -O collections/topics.msmarco-passage.dev-subset.deepimpact.tsv.gz

# MD5 checksum: 88a2987d6a25b1be11c82e87677a262e
```
Expand Down
2 changes: 2 additions & 0 deletions docs/experiments-msmarco-passage-unicoil.md
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,8 @@ QueriesRanked: 6980
#####################
```

This corresponds to the effectiveness reported in the paper.


## Reproduction Log[*](reproducibility.md)

Expand Down
91 changes: 91 additions & 0 deletions docs/regressions-msmarco-passage-deepimpact.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# Anserini: Regressions for DeepImpact on [MS MARCO Passage](/~https://github.com/microsoft/MSMARCO-Passage-Ranking)

This page documents regression experiments for DeepImpact on the MS MARCO Passage Ranking Task, which is integrated into Anserini's regression testing framework.
DeepImpact is described in the following paper:

> Antonio Mallia, Omar Khattab, Nicola Tonellotto, and Torsten Suel. [Learning Passage Impacts for Inverted Indexes.](https://dl.acm.org/doi/10.1145/3404835.3463030) _SIGIR 2021_.
For more complete instructions on how to run end-to-end experiments, refer to [this page](experiments-msmarco-passage-deepimpact.md).

The exact configurations for these regressions are stored in [this YAML file](../src/main/resources/regression/msmarco-passage-deepimpact.yaml).
Note that this page is automatically generated from [this template](../src/main/resources/docgen/templates/msmarco-passage-deepimpact.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

## Indexing

Typical indexing command:

```
nohup sh target/appassembler/bin/IndexCollection -collection JsonVectorCollection \
-input /path/to/msmarco-passage-deepimpact \
-index indexes/lucene-index.msmarco-passage-deepimpact.raw \
-generator DefaultLuceneDocumentGenerator \
-threads 16 -impact -pretokenized -storeRaw \
>& logs/log.msmarco-passage-deepimpact &
```

The directory `/path/to/msmarco-passage-deepimpact/` should be a directory containing the compressed `jsonl` files that comprise the corpus.
See [this page](experiments-msmarco-passage-deepimpact.md) for additional details.

For additional details, see explanation of [common indexing options](common-indexing-options.md).

## Retrieval

Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the 6980 dev set questions; see [this page](experiments-msmarco-passage.md) for more details.

After indexing has completed, you should be able to perform retrieval as follows:

```
nohup target/appassembler/bin/SearchCollection -index indexes/lucene-index.msmarco-passage-deepimpact.raw \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.msmarco-passage.dev-subset.deepimpact.tsv.gz \
-output runs/run.msmarco-passage-deepimpact.deepimpact.topics.msmarco-passage.dev-subset.deepimpact.tsv.gz \
-impact -pretokenized &
```

Evaluation can be performed using `trec_eval`:

```
tools/eval/trec_eval.9.0.4/trec_eval -m map -c -m recip_rank -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.msmarco-passage.dev-subset.txt runs/run.msmarco-passage-deepimpact.deepimpact.topics.msmarco-passage.dev-subset.deepimpact.tsv.gz
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

MAP | DeepImpact|
:---------------------------------------|-----------|
[MS MARCO Passage: Dev](/~https://github.com/microsoft/MSMARCO-Passage-Ranking)| 0.3334 |


MRR | DeepImpact|
:---------------------------------------|-----------|
[MS MARCO Passage: Dev](/~https://github.com/microsoft/MSMARCO-Passage-Ranking)| 0.3386 |


R@1000 | DeepImpact|
:---------------------------------------|-----------|
[MS MARCO Passage: Dev](/~https://github.com/microsoft/MSMARCO-Passage-Ranking)| 0.9476 |

The above runs are in TREC output format and evaluated with `trec_eval`.
In order to reproduce results reported in the paper, we need to convert to MS MARCO output format and then evaluate:

```bash
python tools/scripts/msmarco/convert_trec_to_msmarco_run.py \
--input runs/run.msmarco-passage-deepimpact.deepimpact.topics.msmarco-passage.dev-subset.deep-impact.tsv.gz \
--output runs/run.msmarco-passage-deepimpact.deepimpact.topics.msmarco-passage.dev-subset.deep-impact.tsv.gz.msmarco --quiet

python tools/scripts/msmarco/msmarco_passage_eval.py \
collections/msmarco-passage/qrels.dev.small.tsv \
runs/run.msmarco-passage-deepimpact.deepimpact.topics.msmarco-passage.dev-subset.deep-impact.tsv.gz.msmarco
```

The results should be as follows:

```
#####################
MRR @10: 0.3252764133351524
QueriesRanked: 6980
#####################
```

The final evaluation metric is very close to the one reported in the paper (0.326).
91 changes: 91 additions & 0 deletions docs/regressions-msmarco-passage-unicoil.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# Anserini: Regressions for uniCOIL on [MS MARCO Passage](/~https://github.com/microsoft/MSMARCO-Passage-Ranking)

This page documents regression experiments for uniCOIL on the MS MARCO Passage Ranking Task, which is integrated into Anserini's regression testing framework.
The uniCOIL model is described in the following paper:

> Jimmy Lin and Xueguang Ma. [A Few Brief Notes on DeepImpact, COIL, and a Conceptual Framework for Information Retrieval Techniques.](https://arxiv.org/abs/2106.14807) _arXiv:2106.14807_.
For more complete instructions on how to run end-to-end experiments, refer to [this page](experiments-msmarco-passage-unicoil.md).

The exact configurations for these regressions are stored in [this YAML file](../src/main/resources/regression/msmarco-passage-unicoil.yaml).
Note that this page is automatically generated from [this template](../src/main/resources/docgen/templates/msmarco-passage-unicoil.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

## Indexing

Typical indexing command:

```
nohup sh target/appassembler/bin/IndexCollection -collection JsonVectorCollection \
-input /path/to/msmarco-passage-unicoil \
-index indexes/lucene-index.msmarco-passage-unicoil.raw \
-generator DefaultLuceneDocumentGenerator \
-threads 16 -impact -pretokenized -storeRaw \
>& logs/log.msmarco-passage-unicoil &
```

The directory `/path/to/msmarco-passage-unicoil/` should be a directory containing the compressed `jsonl` files that comprise the corpus.
See [this page](experiments-msmarco-passage-unicoil.md) for additional details.

For additional details, see explanation of [common indexing options](common-indexing-options.md).

## Retrieval

Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the 6980 dev set questions; see [this page](experiments-msmarco-passage.md) for more details.

After indexing has completed, you should be able to perform retrieval as follows:

```
nohup target/appassembler/bin/SearchCollection -index indexes/lucene-index.msmarco-passage-unicoil.raw \
-topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.msmarco-passage.dev-subset.unicoil.tsv.gz \
-output runs/run.msmarco-passage-unicoil.unicoil.topics.msmarco-passage.dev-subset.unicoil.tsv.gz \
-impact -pretokenized &
```

Evaluation can be performed using `trec_eval`:

```
tools/eval/trec_eval.9.0.4/trec_eval -m map -c -m recip_rank -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.msmarco-passage.dev-subset.txt runs/run.msmarco-passage-unicoil.unicoil.topics.msmarco-passage.dev-subset.unicoil.tsv.gz
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

MAP | uniCOIL |
:---------------------------------------|-----------|
[MS MARCO Passage: Dev](/~https://github.com/microsoft/MSMARCO-Passage-Ranking)| 0.3574 |


MRR | uniCOIL |
:---------------------------------------|-----------|
[MS MARCO Passage: Dev](/~https://github.com/microsoft/MSMARCO-Passage-Ranking)| 0.3625 |


R@1000 | uniCOIL |
:---------------------------------------|-----------|
[MS MARCO Passage: Dev](/~https://github.com/microsoft/MSMARCO-Passage-Ranking)| 0.9582 |

The above runs are in TREC output format and evaluated with `trec_eval`.
In order to reproduce results reported in the paper, we need to convert to MS MARCO output format and then evaluate:

```bash
python tools/scripts/msmarco/convert_trec_to_msmarco_run.py \
--input runs/run.msmarco-passage-unicoil.unicoil.topics.msmarco-passage.dev-subset.unicoil.tsv.gz \
--output runs/run.msmarco-passage-unicoil.unicoil.topics.msmarco-passage.dev-subset.unicoil.tsv.gz.msmarco --quiet

python tools/scripts/msmarco/msmarco_passage_eval.py \
tools/topics-and-qrels/qrels.msmarco-passage.dev-subset.txt \
runs/run.msmarco-passage-unicoil.unicoil.topics.msmarco-passage.dev-subset.unicoil.tsv.gz.msmarco
```

The results should be as follows:

```
#####################
MRR @10: 0.35155222404147896
QueriesRanked: 6980
#####################
```

This corresponds to the effectiveness reported in the paper.
6 changes: 6 additions & 0 deletions docs/regressions.md
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,9 @@ nohup python src/main/python/run_regression.py --collection msmarco-passage >& l
nohup python src/main/python/run_regression.py --collection msmarco-passage-doc2query >& logs/log.msmarco-passage-doc2query &
nohup python src/main/python/run_regression.py --collection msmarco-passage-docTTTTTquery >& logs/log.msmarco-passage-docTTTTTquery &
nohup python src/main/python/run_regression.py --collection msmarco-passage-deepimpact >& logs/log.msmarco-passage-deepimpact &
nohup python src/main/python/run_regression.py --collection msmarco-passage-unicoil >& logs/log.msmarco-passage-unicoil &
nohup python src/main/python/run_regression.py --collection msmarco-doc >& logs/log.msmarco-doc &
nohup python src/main/python/run_regression.py --collection msmarco-doc-per-passage >& logs/log.msmarco-doc-per-passage &
nohup python src/main/python/run_regression.py --collection msmarco-doc-docTTTTTquery-per-doc >& logs/log.msmarco-doc-docTTTTTquery-per-doc &
Expand Down Expand Up @@ -121,6 +124,9 @@ nohup python src/main/python/run_regression.py --index --collection msmarco-pass
nohup python src/main/python/run_regression.py --index --collection msmarco-passage-doc2query >& logs/log.msmarco-passage-doc2query &
nohup python src/main/python/run_regression.py --index --collection msmarco-passage-docTTTTTquery >& logs/log.msmarco-passage-docTTTTTquery &
nohup python src/main/python/run_regression.py --index --collection msmarco-passage-deepimpact >& logs/log.msmarco-passage-deepimpact &
nohup python src/main/python/run_regression.py --index --collection msmarco-passage-unicoil >& logs/log.msmarco-passage-unicoil &
nohup python src/main/python/run_regression.py --index --collection msmarco-doc >& logs/log.msmarco-doc &
nohup python src/main/python/run_regression.py --index --collection msmarco-doc-per-passage >& logs/log.msmarco-doc-per-passage &
nohup python src/main/python/run_regression.py --index --collection msmarco-doc-docTTTTTquery-per-doc >& logs/log.msmarco-doc-docTTTTTquery-per-doc &
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# Anserini: Regressions for DeepImpact on [MS MARCO Passage](/~https://github.com/microsoft/MSMARCO-Passage-Ranking)

This page documents regression experiments for DeepImpact on the MS MARCO Passage Ranking Task, which is integrated into Anserini's regression testing framework.
DeepImpact is described in the following paper:

> Antonio Mallia, Omar Khattab, Nicola Tonellotto, and Torsten Suel. [Learning Passage Impacts for Inverted Indexes.](https://dl.acm.org/doi/10.1145/3404835.3463030) _SIGIR 2021_.

For more complete instructions on how to run end-to-end experiments, refer to [this page](experiments-msmarco-passage-deepimpact.md).

The exact configurations for these regressions are stored in [this YAML file](../src/main/resources/regression/msmarco-passage-deepimpact.yaml).
Note that this page is automatically generated from [this template](../src/main/resources/docgen/templates/msmarco-passage-deepimpact.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

## Indexing

Typical indexing command:

```
${index_cmds}
```

The directory `/path/to/msmarco-passage-deepimpact/` should be a directory containing the compressed `jsonl` files that comprise the corpus.
See [this page](experiments-msmarco-passage-deepimpact.md) for additional details.

For additional details, see explanation of [common indexing options](common-indexing-options.md).

## Retrieval

Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the 6980 dev set questions; see [this page](experiments-msmarco-passage.md) for more details.

After indexing has completed, you should be able to perform retrieval as follows:

```
${ranking_cmds}
```

Evaluation can be performed using `trec_eval`:

```
${eval_cmds}
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

${effectiveness}

The above runs are in TREC output format and evaluated with `trec_eval`.
In order to reproduce results reported in the paper, we need to convert to MS MARCO output format and then evaluate:

```bash
python tools/scripts/msmarco/convert_trec_to_msmarco_run.py \
--input runs/run.msmarco-passage-deepimpact.deepimpact.topics.msmarco-passage.dev-subset.deep-impact.tsv.gz \
--output runs/run.msmarco-passage-deepimpact.deepimpact.topics.msmarco-passage.dev-subset.deep-impact.tsv.gz.msmarco --quiet

python tools/scripts/msmarco/msmarco_passage_eval.py \
collections/msmarco-passage/qrels.dev.small.tsv \
runs/run.msmarco-passage-deepimpact.deepimpact.topics.msmarco-passage.dev-subset.deep-impact.tsv.gz.msmarco
```

The results should be as follows:

```
#####################
MRR @10: 0.3252764133351524
QueriesRanked: 6980
#####################
```

The final evaluation metric is very close to the one reported in the paper (0.326).
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# Anserini: Regressions for uniCOIL on [MS MARCO Passage](/~https://github.com/microsoft/MSMARCO-Passage-Ranking)

This page documents regression experiments for uniCOIL on the MS MARCO Passage Ranking Task, which is integrated into Anserini's regression testing framework.
The uniCOIL model is described in the following paper:

> Jimmy Lin and Xueguang Ma. [A Few Brief Notes on DeepImpact, COIL, and a Conceptual Framework for Information Retrieval Techniques.](https://arxiv.org/abs/2106.14807) _arXiv:2106.14807_.

For more complete instructions on how to run end-to-end experiments, refer to [this page](experiments-msmarco-passage-unicoil.md).

The exact configurations for these regressions are stored in [this YAML file](../src/main/resources/regression/msmarco-passage-unicoil.yaml).
Note that this page is automatically generated from [this template](../src/main/resources/docgen/templates/msmarco-passage-unicoil.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

## Indexing

Typical indexing command:

```
${index_cmds}
```

The directory `/path/to/msmarco-passage-unicoil/` should be a directory containing the compressed `jsonl` files that comprise the corpus.
See [this page](experiments-msmarco-passage-unicoil.md) for additional details.

For additional details, see explanation of [common indexing options](common-indexing-options.md).

## Retrieval

Topics and qrels are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the 6980 dev set questions; see [this page](experiments-msmarco-passage.md) for more details.

After indexing has completed, you should be able to perform retrieval as follows:

```
${ranking_cmds}
```

Evaluation can be performed using `trec_eval`:

```
${eval_cmds}
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

${effectiveness}

The above runs are in TREC output format and evaluated with `trec_eval`.
In order to reproduce results reported in the paper, we need to convert to MS MARCO output format and then evaluate:

```bash
python tools/scripts/msmarco/convert_trec_to_msmarco_run.py \
--input runs/run.msmarco-passage-unicoil.unicoil.topics.msmarco-passage.dev-subset.unicoil.tsv.gz \
--output runs/run.msmarco-passage-unicoil.unicoil.topics.msmarco-passage.dev-subset.unicoil.tsv.gz.msmarco --quiet

python tools/scripts/msmarco/msmarco_passage_eval.py \
tools/topics-and-qrels/qrels.msmarco-passage.dev-subset.txt \
runs/run.msmarco-passage-unicoil.unicoil.topics.msmarco-passage.dev-subset.unicoil.tsv.gz.msmarco
```

The results should be as follows:

```
#####################
MRR @10: 0.35155222404147896
QueriesRanked: 6980
#####################
```

This corresponds to the effectiveness reported in the paper.
Loading

0 comments on commit f79fb67

Please sign in to comment.