
Why FP?
Brisbane	Functional	Programming	Group	-	 2013-07-23

What makes good code?

It needs to be DRY
Logic	shouldn't	be	repeated	in	a	system.

Create	abstractions	for	common	patterns.

High	level	abstractions	usually	take	logic	as	parameters.

DRY Code, OO style
Behaviour	is	abstracted	over	with	objects:

Decorators
Visitors
SimpleBeanFactoryAwareAspectInstanceFactory	!!!

Even	with	mixins,	these	compose	awkwardly.

It needs to be reasoned about
Reading	≠	Comprehension

Reasoning	about	code	requires	knowing	and	thinking	about	all
dependencies.

Coupling	should	minimised	and	explicit.

Coupling	to	time	is	most	difficult	to	reason	about.

If	you	need	to	open	up	a	debugger	to	comprehend	things,
you've	already	lost	(IMHO).

Good code, grossly trivialised
Built	from	composable	abstractions	so	we	don't	repeat

ourselves.

Coupling	of	these	abstractions	should	be	minimal	and	explicit
so	they	can	be	understood.

What is Functional Programming?

Programming with functions! duh!
Break	things	up	into	lots	of	small	reusable	functions.

Compose	those	functions	together	into	bigger	functions.

Pass	functions	to	other	(higher	order)	functions.

Sounds Easy?
Not	quite!

Because	you	are	passing	functions	to	functions,	you	have	less
control	over	execution	order.

It	makes	weird	mutation	bugs	even	weirder	and	difficult	to
figure	out!

Coding	style	needs	to	be	changed	to	not	rely	on	execution
order.

Pure / Referencially Transparent
Functions

Functions	that	can	be	replaced	with	it's	value	without
changing	program	behaviour.

1	+	1	is	always	2.

Functions	that	mutate	structures	in	place	but	don't	leak	the
mutable	instance	to	the	caller	are	pure	too!

These	functions	are	the	building	blocks	of	safe	FP
abstractions.

"Type Assisted Referential
Transparency"

"Pure	vs	Impure	Langs/FP"	is	a	false	dichotomy.

Side	effects	are	always	useful,	regardless	of	the	paradigm.

Haskell	has	side	effects,	just	explicitly	segregates	pure
from	impure	functions	with	types.

Conversely,	purity	is	still	a	concern	in	"impure"	languages,
it	is	just	implicit.

Favour Immutability
Effective	Java,	written	12	years	ago,	recommends	this.

Variables	are	a	large	cause	of	bugs,	regardless	of	PL.

If	something	changes,	anything	that	reads	it	is	coupled	to
time	/	execution	order.

In	FP,	we	want	to	feed	values	through	pipelines	of	functions
without	needing	to	build	copying	into	our	abstractions.

Immutability - Language
Comparison

All	refs	and	collections	are	immutable	by	default.

Haskell:	Mutable	Refs	and	STM	in	IO	code	only

Clojure:	STM	only	and	'Transient'	data	structures.

Scala:	Variables	anywhere.	Also	has	STM.

OCaml:	Unrestricted	Refs	and	STM.

Lazy Evaluation
Lazy	evaluation	will	only	execute	a	computation	when	a	value

is	needed.

Can	describe	a	computation	without	caring	about	it	is	needed
without	wasting	CPU	cycles.

Wonderful	for	abstractions	relating	to	memoization	or
infinite	structures.

Code	cannot	be	coupled	to	time	given	no	guarantees	to
execution	order.

Lazy vs Eager: Language
Comparison

Haskell	is	lazy	by	default.

Clojure	is	an	eager	language,	but	has	lazy	collections	&	some
lazy	library	functions.

Scala	&	OCaml	are	eager	but	have	laziness	language
constructs.

Statically vs Dynamically Typed
Has	nothing	to	do	with	FP!	Completely	subjective.

Some	people	that	think	that	dealing	with	compiler	errors	is
too	hard.

Some	people	that	think	that	not	having	types	to	help	reason
about	and	verify	code	is	too	hard.

You	can	do	FP	on	either,	but	be	wary	that	I'm	biased	to
static	types	(Haskell,Scala,OCaml)

Summary
FP	is	about	weakening	parts	of	our	code	so	we	can	write

stronger	abstractions	around	it.

By	decoupling	our	code	from	execution	order,	we	can	do	lots
of	wonderful	things.

Functional Abstractions

Collection Libraries
Functional	collection	libraries	are	not	novel.

map,	flatMap,	filter,	reduce/fold,	...

Perl,Ruby,Groovy,Python	have	been	doing	similar	things	for	a
long	time.

Nested	mutable	data	structures	cause	big	headaches.

Collection Example
val	xacts	=	List(Xact("Buy	Pizza",-20,"food"),...)

//Get	me	the	list	of	accounts	->	List[Xact]	in	descending	spend	order	
xacts.filter(
		_.amount	<	0	//Only	count	negative	transactions	(expenses)
).groupBy(
		_.account				//Group	each	xact	by	its	account
).toSeq.sortBy(
		_._2.map(_.amount).sum	//Sort	by	the	sum	of	all	xacts.
)
												

Parallel Collection Example
val	xacts	=	List(Xact("Buy	Pizza",-20,"food"),...)

//Get	me	the	list	of	accounts	->	List[Xact]	in	descending	spend	order	
xacts.par.filter(
		_.amount	<	0	//Only	count	negative	transactions	(expenses)
).groupBy(
		_.account				//Group	each	xact	by	its	account
).toSeq.sortBy(
		_._2.map(_.amount).sum	//Sort	by	the	sum	of	all	xacts.
)
												

Parallelisation Remarks
Operations	must	be	pure	to	make	this	work.

No	distribution.	Middle	ground	between	single	core	and
MapReduce-style	parallelism.

Scoobi	(in	Scala)	gets	pretty	close	to	this	api	while
distributing	computation	over	hadoop.

No	FP	language	can	parallelise	automatically.	Not	even
haskell.

Explicit Computations
Because	we	have	the	power	to	abstract	over	computation,	we
can	write	our	own	'computation	types'	that	describe	and

constrain	what	we're	doing.

Allows	us	to	be	precise,	while	FP	abstractions	help	keep	it
expressive.

Option / Maybe
I	use	this	heavily	in	my	scala	code.

def	findUserByName(users:	Seq[Users]	,	name:String):	Option[User]	=	{
		users.find(_.username	==	name)
}

//Convert	the	optional	user	to	an	email	address
findByUserName(users,	"bkolera").map(_.name).getOrElse("Unknown")

//They	even	compose.	This	will	return	a	full	option	if	both	are	present
for	{
		creator	<-	findUserByName(users	,	creatorUsername)
		owner			<-	findUserByName(users	,	ownerUsername)
}	yield	(creator	,	owner)
												

Disjunction / Either
I	use	this	heavily	in	my	scala	code.

def	findUserByName(users:	Seq[Users]	,	name:String):	Error	\/	User	=	{
		users.find(_.username	==	name)	match	{
				case	None				=>	-\/(Error(s"User	$name	not	found!"))
				case	Some(u)	=>	\/-(u)
		}
}

//Convert	the	potentially	found	user	to	a	name
findByUserName(users,	"bkolera").map(_.name).getOrElse("Unknown")

//This	will	return	a	\/-(String,String)	if	both	are	right,	else	the	
//first	error	message	will	be	returned	on	the	left
for	{
		creator	<-	findUserByName(users	,	creatorUsername)
		owner			<-	findUserByName(users	,	ownerUsername)
}	yield	(creator.name	,	owner.name)
												

Are you crazy? Why not just use
nulls and exceptions?

Because	these	are	explicit.	Caller	knows	what	to	expect	from
me.

No	loss	of	semantics	(except	not	jumping	the	stack!)	and	are
actually	more	expressive.

It	is	also	really	cool	that	caller	can	treat	errors	exactly
like	no	value	(or	use	the	error	if	they	please)!

Taking this even further!
Can	describe	lots	of	computations	that	have	properties	like:

Reader:	A	computation	that	requires	some	configuration
before	producing	a	value.
Writer:	A	computation	logs	some	state	between	steps.
State:	A	computation	that	can	mutate	state	(purely)	between
steps.
A	mixture	of	any	of	the	above	mentioned	things.

Explicit but Expressive Purity
Data	structures	that	keep	stateful	computations	pure	and	also

I	find	this	very	exciting	and	beautiful!

Sure,	they	aren't	going	to	work	for	100%	of	problems	but	they
are	a	terrific	first	step	to	attempt	to	keep	things	pure	and

composable.

Parser Combinators

Each	bit	is	~	String	->	Either	Error	(A,String)

Glued	together	with	special	combinators	(many1,	<|>,etc.).

import	Text.Parsec
import	Control.Applicative	hiding	((<|>))

number									=	many1	digit
positiveNumber	=	char	'+'	*>	number
negativeNumber	=	(:)	<$>	char	'-'	<*>	number

integer	=	stringToInteger	<$>	(positiveNumber	<|>	negativeNumber	<|>	number)
		where	stringToInteger	=	read	::	String	->	Integer

Parser Combinators - Continued
We'd	not	be	able	to	break	these	parsers	up	if	they	had

internal	state.

These	compose	better	and	more	explictly	than	appending	regex
strings.

Primitives	have	error	handling	in	them,	each	knows	how	to
describe	what	it	was	looking	for	and	couldn't	find.

Something	special:	<$>,	*>	and	<*>	aren't	even	part	of
parsec.

Typeclasses: Open Polymorphism

We	don't	need	to	know	what	a	is.	The	eq	instance	can	be
implemented	elsewhere.

Abstraction	is	completely	open,	yet	safe.	Unlike	java's
equality	method!

class	Eq	a	where
		(==)	::	a	->	a	->	Bool
		(/=)	::	a	->	a	->	Bool
		x	/=	y	=	not	(x	==	y)

findThing	::	(Eq	a)	=>	a	->	[a]	->	Maybe	a
findThing	a	=	find	(a	==)

These things compose too!
An	example	from	argonaut,	an	awesome	scala	JSON	parsing

library:

case	class	Account(id:	Int,	name:	String)
case	class	Person(name:	String,	age:	Int,	accounts:	List[Account])
	
implicit	def	AccountCodecJson	=
		casecodec2(Account.apply,	Account.unapply)("id",	"name")																

implicit	def	PersonCodecJson	=
		casecodec3(Person.apply,	Person.unapply)("name",	"age",	"accounts")																

val	people				=	List(Person("ben","26",List(Account(1,"account1"))),...)
val	prettyStr	=	people.asJson.spaces2
val	personOpt	=	prettyPrinted.decodeOption[List[Person]]

(FP is so awesome it even has
decoupled, composable

polymorphism. ;))

Futures

We	use	this	a	lot	for	glue	APIs	that	need	to	hit	lots	of
services.

Calls	can	happen	in	parallel	reducing	latency	and	are	also
non	blocking.

//Use	dispatch	to	call	a	REST	API	and	parse	its	XML
def	temperature(loc:Location):	Future[Double]	=	???

def	hottest(locs:	Location*):	=	{
		val	locFutures	=	locs.map(loc	=>	temperature(loc).map(_	->	loc))
		val	futureLocs	=	Future.sequence(locFutures)
		futureLocs.map(_.maxBy(_.1))
}

Software Transactional Memory
(def	account1	(ref	100))
(def	account2	(ref	0))

(defn	transfer	[amount	from	to]
				(dosync
							(alter	from	-	amount)			;	alter	from	=>	(-	@from	amount)
							(alter	to			+	amount)))	;	alter	to			=>	(+	@to	amount)

;=>	@account1	->	100
;=>	@account2	->	0
;=>	(transfer	100	account1	account2)	->	100
;=>	@account1	->	0
;=>	@account2	->	100

GHC Optimisations
Because	haskell	is	completely	lazy	and	knows	which	functions
are	pure,	it	can	make	some	very	cool	improvements	to	your

code.

Things	like	fold	fusion,	common	expression	substitution,
inlining,	etc.

Generally	have	really	good	performance	without	trying,	except
when	you	have	space	leaks!

Conclusions

We are already kinda using FP
Collection	libraries

Ruby	uses	loan	patterns,	etc.

Lack	of	purity	inhibits	our	ability	to	fully	realise	FP
abstractions.

FP is actually not easy to learn!
It	forces	us	to	be	careful	about	how	we	architect	our	code.

Doing	the	things	that	we	need	to	do	in	FP	requires	us	to
change	the	structures	and	abstractions	that	we	use.

This	change	in	thought	process	is	painful,	yet	wonderful	and
irreversible.

It isn't just about concurrency!
...	or	parallelism

...	or	testing

...	or	running	away	from	OO

...	or	a	general	feeling	of	smugness	and	superiority	;)

It	is	bigger	and	more	profound	than	anything	like	that.

It isn't about removing side
effects!

Side	effects	are	very	important!

We	all	have	files,	databases	and	sockets	to	read	and	write
from.

We're	accepting	the	fact	that	functions	that	have	side
effects	don't	compose	too	well.

The abstractions are key!
We	make	as	much	of	our	logic	referentially	transparent	to

make	it	easy	to	reason	about.

Decoupling	our	code	from	time	makes	our	code	much	easier	to
reuse	and	build	abstractions	over	that	would	otherwise	be

unimaginable.

We	strive	to	use	pure	code	to	tame	the	uncertainty	of	the
outside	world	(like	with	STM)	and	make	it	as	safe	and	easy	to

reason	about	as	is	possible.

It isn't really about types!
FP	doesn't	mean	coding	with	rigid	types	everywhere.

You	can	have	your	programmers	make	there	own	assertions	and
reasoning	about	safeness	of	code.

If	you're	smart	enough	to	do	that,	go	for	it!

I'm	stupid,	I	make	mistakes	all	of	the	time.	I	prefer	to	let
the	computer	help.

Where to go from here?

Books!
Haskell:	Learn	you	a	Haskel	For	Great	Good
Haskell:	Real	World	Haskell
Scala:	Functional	Programming	in	Scala
Clojure:	The	Joy	Of	Clojure

Write Code!
Slow	relevant	practice	is	the	only	way.

Use	FP	for	any	reports,	personal	automations	or
microservices.

Ask Questions!
Lots	of	very	knowledgeable	people	on	our	mailing	list	all	to

willing	to	help.

Lang	specific	mailing	lists	too.

Also	freenode.org	irc	channels	#haskell,	#scala,	#fp-in-
scala,	#bfpg

Teach others what you learn!
Teaching	is	the	best	form	of	learning,	with	pretty	much

everything.

Commit	yourself	to	learning	something	and	plan	to	do	a	BFPG
talk!	(We	can	help	and	mentor)

Thanks for listening!
twitter:	@benkolera

email:	ben.kolera@gmail.com

Slides:	whyfp.benkolera.com

