Skip to content

awslabs/speech-representations

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Speech Representations

License

Models and code for deep learning representations developed by the AWS AI Speech team:

NOTE: This repo is not actively maintained. For future experiments with DeCoAR and DeCoAR 2.0, we suggest using the S3PRL speech toolkit, which has active and standardized featurizer/upstream/downstream wrappers for these models.

Installation

We provide a library and CLI to featurize speech utterances. We hope to release training/fine-tuning code in the future.

Kaldi should be installed to kaldi/, or $KALDI_ROOT should be set.

We expect Python 3.6+. The BERTphone model are defined in MXNet and our DeCoAR models are defined in Pytorch. Clone this repository, then:

pip install -e .
# For DeCoAR
pip install torch fairseq
# For BERTphone
pip install mxnet-mkl~=1.6.0   # ...or mxnet-cu102mkl for GPU w/ CUDA 10.2, etc.
pip install gluonnlp # optional; for featurizing with bertphone

Pre-trained models

First, download the model weights:

mkdir artifacts
cd artifacts
# For DeCoAR trained on LibriSpeech (257M)
wget /~https://github.com/awslabs/speech-representations/releases/download/decoar/checkpoint_decoar.pt
# For BERTphone 8KHz (λ=0.2) trained on Fisher
wget /~https://github.com/awslabs/speech-representations/releases/download/bertphone/bertphone_fisher_02-87159543.params
# For Decoar 2.0:
wget /~https://github.com/awslabs/speech-representations/releases/download/decoar2/checkpoint_decoar2.pt

We support featurizing individual files with the CLI:

speech-reps featurize --model {decoar,bertphone,decoar2} --in-wav <input_file>.wav --out-npy <output_file>.npy
# --params <file>: load custom weights (otherwise use `artifacts/`)
# --gpu <int>:     use GPU (otherwise use CPU)

or in code:

from speech_reps.featurize import DeCoARFeaturizer
# Load the model on GPU 0
featurizer = DeCoARFeaturizer('artifacts/checkpoint_decoar.pt', gpu=0)
# Returns a (time, feature) NumPy array
data = featurizer.file_to_feats('my_wav_file.wav')

We plan to support Kaldi .scp and .ark files soon. For now, batches can be processed with the underlying featurizer._model.

References

If you found our package or pre-trained models useful, please cite the relevant work:

DeCoAR

@inproceedings{decoar,
  author    = {Shaoshi Ling and Yuzong Liu and Julian Salazar and Katrin Kirchhoff},
  title     = {Deep Contextualized Acoustic Representations For Semi-Supervised Speech Recognition},
  booktitle = {{ICASSP}},
  pages     = {6429--6433},
  publisher = {{IEEE}},
  year      = {2020}
}

BERTphone

@inproceedings{bertphone,
  author    = {Shaoshi Ling and Julian Salazar and Yuzong Liu and Katrin Kirchhoff},
  title     = {BERTphone: Phonetically-aware Encoder Representations for Speaker and Language Recognition},
  booktitle = {{Speaker Odyssey}},
  publisher = {{ISCA}},
  year      = {2020}
}

DeCoAR 2.0

@misc{ling2020decoar,
      title={DeCoAR 2.0: Deep Contextualized Acoustic Representations with Vector Quantization}, 
      author={Shaoshi Ling and Yuzong Liu},
      year={2020},
      eprint={2012.06659},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}