Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Assertion fail when creating very large matrix #10158

Closed
leopd opened this issue Mar 19, 2018 · 5 comments
Closed

Assertion fail when creating very large matrix #10158

leopd opened this issue Mar 19, 2018 · 5 comments

Comments

@leopd
Copy link
Contributor

leopd commented Mar 19, 2018

Description

MXNet crashes with assertion failure when creating matrix with more than 4 billion entries.

MXNetError: [17:43:16] include/mxnet/././tensor_blob.h:276: Check failed: this->shape_.Size() == shape.Size() (4352000000 vs. 57032704) TBlob.get_with_shape: new and old shape do not match total elements

Environment info (Required)

----------Python Info----------
Version      : 3.6.4
Compiler     : GCC 7.2.0
Build        : ('default', 'Jan 16 2018 18:10:19')
Arch         : ('64bit', '')
------------Pip Info-----------
Version      : 9.0.1
Directory    : /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/pip
----------MXNet Info-----------
Version      : 1.1.0
Directory    : /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet
Commit Hash   : 07a83a0325a3d782513a04f47d711710972cb144
----------System Info----------
Platform     : Linux-4.4.0-1052-aws-x86_64-with-debian-stretch-sid
system       : Linux
node         : ip-172-31-14-183
release      : 4.4.0-1052-aws
version      : #61-Ubuntu SMP Mon Feb 12 23:05:58 UTC 2018
----------Hardware Info----------
machine      : x86_64
processor    : x86_64
Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                32
On-line CPU(s) list:   0-31
Thread(s) per core:    2
Core(s) per socket:    16
Socket(s):             1
NUMA node(s):          1
Vendor ID:             GenuineIntel
CPU family:            6
Model:                 79
Model name:            Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
Stepping:              1
CPU MHz:               2699.984
CPU max MHz:           3000.0000
CPU min MHz:           1200.0000
BogoMIPS:              4600.10
Hypervisor vendor:     Xen
Virtualization type:   full
L1d cache:             32K
L1i cache:             32K
L2 cache:              256K
L3 cache:              46080K
NUMA node0 CPU(s):     0-31
Flags:                 fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single retpoline kaiser fsgsbase bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx xsaveopt
----------Network Test----------
Setting timeout: 10
Timing for MXNet: /~https://github.com/apache/incubator-mxnet, DNS: 0.0018 sec, LOAD: 1.3588 sec.
Timing for Gluon Tutorial(en): http://gluon.mxnet.io, DNS: 0.0643 sec, LOAD: 0.1102 sec.
Timing for Gluon Tutorial(cn): https://zh.gluon.ai, DNS: 0.2234 sec, LOAD: 0.1722 sec.
Timing for FashionMNIST: https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz, DNS: 0.0266 sec, LOAD: 0.1238 sec.
Timing for PYPI: https://pypi.python.org/pypi/pip, DNS: 0.0093 sec, LOAD: 0.1161 sec.
Timing for Conda: https://repo.continuum.io/pkgs/free/, DNS: 0.0105 sec, LOAD: 0.0586 sec.

Package used (Python/R/Scala/Julia):
(I'm using ...)

For Scala user, please provide:
1. Java version: (`java -version`)
2. Maven version: (`mvn -version`)
3. Scala runtime if applicable: (`scala -version`)

For R user, please provide R sessionInfo():

Error Message:

---------------------------------------------------------------------------
MXNetError                                Traceback (most recent call last)
<ipython-input-2-4d3e062d9a75> in <module>()
----> 1 print(mx.nd.zeros(shape=(34000000,128)))

~/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/ndarray/ndarray.py in __repr__(self)
    180         """Returns a string representation of the array."""
    181         shape_info = 'x'.join(['%d' % x for x in self.shape])
--> 182         return '\n%s\n<%s %s @%s>' % (str(self.asnumpy()),
    183                                       self.__class__.__name__,
    184                                       shape_info, self.context)

~/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/ndarray/ndarray.py in asnumpy(self)
   1791             self.handle,
   1792             data.ctypes.data_as(ctypes.c_void_p),
-> 1793             ctypes.c_size_t(data.size)))
   1794         return data
   1795 

~/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/base.py in check_call(ret)
    144     """
    145     if ret != 0:
--> 146         raise MXNetError(py_str(_LIB.MXGetLastError()))
    147 
    148 

MXNetError: [17:43:16] include/mxnet/././tensor_blob.h:276: Check failed: this->shape_.Size() == shape.Size() (4352000000 vs. 57032704) TBlob.get_with_shape: new and old shape do not match total elements

Stack trace returned 10 entries:
[bt] (0) /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/libmxnet.so(+0x276938) [0x7f2820f26938]
[bt] (1) /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/libmxnet.so(+0x276d48) [0x7f2820f26d48]
[bt] (2) /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/libmxnet.so(+0x2a61c8) [0x7f2820f561c8]
[bt] (3) /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/libmxnet.so(+0x496e80) [0x7f2821146e80]
[bt] (4) /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/libmxnet.so(+0x25cbd8c) [0x7f282327bd8c]
[bt] (5) /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/libmxnet.so(+0x259f54d) [0x7f282324f54d]
[bt] (6) /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/libmxnet.so(MXNDArraySyncCopyToCPU+0xa) [0x7f282303dd3a]
[bt] (7) /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/lib-dynload/../../libffi.so.6(ffi_call_unix64+0x4c) [0x7f28b2a06ec0]
[bt] (8) /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/lib-dynload/../../libffi.so.6(ffi_call+0x22d) [0x7f28b2a0687d]
[bt] (9) /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/lib-dynload/_ctypes.cpython-36m-x86_64-linux-gnu.so(_ctypes_callproc+0x2ce) [0x7f28b2c1bdee]

Minimum reproducible example

print(mx.nd.zeros(shape=(34000000,128)))

Steps to reproduce

Seems to be a problem instantiating a matrix with more than 4B entries. I've tried mx.nd.zeros, and mx.random.uniform -- both do about the same thing. If the number of entries is less than 2^32 it's fine.

@reminisce
Copy link
Contributor

There is a plan of supporting int64 as the type of tensor dimension sizes.

@leopd
Copy link
Contributor Author

leopd commented Mar 19, 2018

Any reasonable workaround until this plan is finished?

@reminisce
Copy link
Contributor

As far as I know, seems no easy workaround right now. May I know in what case you would need to allocate such a big matrix? Does a sparse matrix of csr format work for you?

@leopd
Copy link
Contributor Author

leopd commented Mar 20, 2018

Sparse won't work -- my data is fully dense. I'm working with very large sets of embedding vectors -- you can think of it as a 34M class softmax output and that's pretty close. I guess I'll have to shard them into groups that fit in the limit and do the reduce by hand. Thx.

@ankkhedia
Copy link
Contributor

Hi @leopd The issue is already already getting tracked in #9207 and is a part of next plan. So, closing the issue. Please feel free to reopen if closed in error.
@sandeep-krishnamurthy Could you please tag this issue as Duplicate and close it.

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants