This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
/
Copy pathsequence_mask-inl.h
297 lines (258 loc) · 10.4 KB
/
sequence_mask-inl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file wl_sequence_mask-inl.h
* \brief
* \author Sebastian Bodenstien
*/
#ifndef MXNET_OPERATOR_SEQUENCE_MASK_INL_H_
#define MXNET_OPERATOR_SEQUENCE_MASK_INL_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <algorithm>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "./mshadow_op.h"
#include "./operator_common.h"
namespace mxnet {
namespace op {
namespace seq_mask {
enum SequenceMaskOpInputs { kData, kSequenceLength };
enum SequenceMaskOpOutputs { kOut };
enum SequenceMaskOpBackResource { kTempSpace };
} // namespace seq_mask
struct SequenceMaskParam : public dmlc::Parameter<SequenceMaskParam> {
bool use_sequence_length;
float value;
int axis;
DMLC_DECLARE_PARAMETER(SequenceMaskParam) {
DMLC_DECLARE_FIELD(use_sequence_length)
.set_default(false)
.describe(
"If set to true, this layer takes in an extra input parameter "
"`sequence_length` "
"to specify variable length sequence");
DMLC_DECLARE_FIELD(value).set_default(0.).describe("The value to be used as a mask.");
DMLC_DECLARE_FIELD(axis).set_default(0).describe(
"The sequence axis. Only values of 0 and 1 are currently supported.");
}
};
template <typename DType, typename IType>
void SequenceMaskExec(const mshadow::Tensor<cpu, 3, DType>& data,
const mshadow::Tensor<cpu, 1, IType>& indices,
const OpReqType req,
mshadow::Stream<cpu>* const s,
int axis,
DType val);
#ifdef __CUDACC__
template <typename DType, typename IType>
void SequenceMaskExec(const mshadow::Tensor<gpu, 3, DType>& data,
const mshadow::Tensor<gpu, 1, IType>& indices,
const OpReqType req,
mshadow::Stream<gpu>* const s,
int axis,
DType val);
#endif
template <typename xpu, typename DType, typename IType>
class SequenceMaskOp : public Operator {
public:
explicit SequenceMaskOp(SequenceMaskParam p) {
this->param_ = p;
}
virtual void Forward(const OpContext& ctx,
const std::vector<TBlob>& in_data,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& out_data,
const std::vector<TBlob>& aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(in_data.size(), param_.use_sequence_length ? 2U : 1U);
CHECK_EQ(out_data.size(), 1U);
Stream<xpu>* s = ctx.get_stream<xpu>();
// Get any size input + output into required form
auto d0 = in_data[seq_mask::kData].size(0);
auto d1 = in_data[seq_mask::kData].size(1);
auto dsize = in_data[seq_mask::kData].Size();
if (dsize == 0) {
return; // noop if any input dimension is zero-sized, out_data is of a right shape
}
auto rest_size = dsize / (d0 * d1);
Shape<3> s3 = Shape3(d0, d1, rest_size);
Tensor<xpu, 3, DType> data = in_data[seq_mask::kData].get_with_shape<xpu, 3, DType>(s3, s);
Tensor<xpu, 3, DType> out = out_data[seq_mask::kOut].get_with_shape<xpu, 3, DType>(s3, s);
// Actual implementation of masking
Assign(out, req[seq_mask::kOut], F<mshadow_op::identity>(data));
if (param_.use_sequence_length) {
Tensor<xpu, 1, IType> indices = in_data[seq_mask::kSequenceLength].get<xpu, 1, IType>(s);
SequenceMaskExec<DType, IType>(
out, indices, req[seq_mask::kOut], s, param_.axis, static_cast<DType>(param_.value));
}
}
virtual void Backward(const OpContext& ctx,
const std::vector<TBlob>& out_grad,
const std::vector<TBlob>& in_data,
const std::vector<TBlob>& out_data,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& in_grad,
const std::vector<TBlob>& aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(out_grad.size(), 1U);
CHECK_EQ(in_data.size(), param_.use_sequence_length ? 2U : 1U);
Stream<xpu>* s = ctx.get_stream<xpu>();
// Get any size input + output into required form
auto d0 = in_grad[seq_mask::kData].size(0);
auto d1 = in_grad[seq_mask::kData].size(1);
auto dsize = in_grad[seq_mask::kData].Size();
auto rest_size = dsize / (d0 * d1);
Shape<3> s3 = Shape3(d0, d1, rest_size);
Tensor<xpu, 3, DType> data_g = in_grad[seq_mask::kData].get_with_shape<xpu, 3, DType>(s3, s);
Tensor<xpu, 3, DType> out_g = out_grad[seq_mask::kOut].get_with_shape<xpu, 3, DType>(s3, s);
// Actual implementation of masking
if (req[seq_mask::kData] == kNullOp)
return;
if (!param_.use_sequence_length) {
Assign(data_g, req[seq_mask::kData], F<mshadow_op::identity>(out_g));
} else {
Tensor<xpu, 1, IType> indices = in_data[seq_mask::kSequenceLength].get<xpu, 1, IType>(s);
if (req[seq_mask::kData] == kAddTo) {
Tensor<xpu, 3, DType> out_g_temp =
ctx.requested[seq_mask::kTempSpace].get_space_typed<xpu, 3, DType>(s3, s);
out_g_temp = F<mshadow_op::identity>(out_g);
out_g = out_g_temp;
SequenceMaskExec<DType, IType>(out_g, indices, kWriteInplace, s, param_.axis, DType(0.));
Assign(data_g, kAddTo, F<mshadow_op::identity>(out_g));
} else {
Assign(data_g, req[seq_mask::kData], F<mshadow_op::identity>(out_g));
SequenceMaskExec<DType, IType>(
data_g, indices, req[seq_mask::kData], s, param_.axis, DType(0.));
}
}
}
private:
SequenceMaskParam param_;
}; // class SequenceMaskOp
template <typename xpu>
Operator* CreateOp(SequenceMaskParam param, int dtype, int itype);
#if DMLC_USE_CXX11
class SequenceMaskProp : public OperatorProperty {
public:
int NumVisibleOutputs() const override {
return 1;
}
int NumOutputs() const override {
return 1;
}
std::vector<std::string> ListArguments() const override {
if (param_.use_sequence_length)
return {"data", "sequence_length"};
else
return {"data"};
}
std::vector<std::string> ListOutputs() const override {
return {"output"};
}
void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override {
param_.Init(kwargs);
}
std::map<std::string, std::string> GetParams() const override {
return param_.__DICT__();
}
bool InferShape(mxnet::ShapeVector* in_shape,
mxnet::ShapeVector* out_shape,
mxnet::ShapeVector* aux_shape) const override {
using namespace mshadow;
CHECK_EQ(in_shape->size(), param_.use_sequence_length ? 2U : 1U)
<< "Input:[data, sequence_length]";
const mxnet::TShape& dshape = (*in_shape)[seq_mask::kData];
CHECK_GT(dshape.ndim(), 1U) << "The data array must be of rank 2 or greater.";
CHECK((param_.axis == 0) || (param_.axis == 1))
<< "Current implementation expects axis to be 0 or 1.";
// seq length vector is same as batch size
int sbatch = param_.axis ? dshape[0] : dshape[1];
if (param_.use_sequence_length)
SHAPE_ASSIGN_CHECK(*in_shape, seq_mask::kSequenceLength, Shape1(sbatch));
const mxnet::TShape& oshape = dshape;
out_shape->clear();
out_shape->push_back(oshape);
return true;
}
bool InferType(std::vector<int>* in_type,
std::vector<int>* out_type,
std::vector<int>* aux_type) const override {
CHECK_GE(in_type->size(), param_.use_sequence_length ? 2U : 1U);
int dtype = (*in_type)[0];
CHECK_NE(dtype, -1) << "First input must have specified type";
for (size_t i = 0; i < in_type->size(); ++i) {
if ((*in_type)[i] == -1) {
(*in_type)[i] = dtype;
}
}
out_type->clear();
out_type->push_back(dtype);
return true;
}
OperatorProperty* Copy() const override {
auto ptr = new SequenceMaskProp();
ptr->param_ = param_;
return ptr;
}
std::string TypeString() const override {
return "SequenceMask";
}
std::vector<int> DeclareBackwardDependency(const std::vector<int>& out_grad,
const std::vector<int>& in_data,
const std::vector<int>& out_data) const override {
if (param_.use_sequence_length)
return {out_grad[seq_mask::kOut], in_data[seq_mask::kSequenceLength]};
else
return {out_grad[seq_mask::kOut]};
}
std::vector<ResourceRequest> BackwardResource(const mxnet::ShapeVector& in_shape) const override {
return {ResourceRequest::kTempSpace};
}
std::vector<std::pair<int, void*> > BackwardInplaceOption(
const std::vector<int>& out_grad,
const std::vector<int>& in_data,
const std::vector<int>& out_data,
const std::vector<void*>& in_grad) const override {
return {{out_grad[seq_mask::kOut], in_grad[seq_mask::kData]}};
}
std::vector<std::pair<int, void*> > ForwardInplaceOption(
const std::vector<int>& in_data,
const std::vector<void*>& out_data) const override {
return {{in_data[seq_mask::kData], out_data[seq_mask::kOut]}};
}
Operator* CreateOperator(Context ctx) const override {
LOG(FATAL) << "Not Implemented.";
return nullptr;
}
Operator* CreateOperatorEx(Context ctx,
mxnet::ShapeVector* in_shape,
std::vector<int>* in_type) const override;
private:
SequenceMaskParam param_;
}; // class SequenceMaskProp
#endif // DMLC_USE_CXX11
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_SEQUENCE_MASK_INL_H_