This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
/
Copy pathndarray.cc
2718 lines (2534 loc) · 92 KB
/
ndarray.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file ndarray.cc
* \brief ndarry module of mxnet
*/
#include <dmlc/io.h>
#include <dmlc/logging.h>
#include <dmlc/memory_io.h>
#include <dmlc/registry.h>
#include <mshadow/tensor.h>
#include <mxnet/base.h>
#include <mxnet/imperative.h>
#include <mxnet/ndarray.h>
#include <mxnet/resource.h>
#include "../common/utils.h"
#include "../operator/nn/dnnl/dnnl_base-inl.h"
#include "../operator/tensor/init_op.h"
#include "../operator/tensor/matrix_op-inl.h"
#include "../profiler/storage_profiler.h"
#include "./ndarray_function.h"
#if MXNET_USE_ONEDNN == 1
#include <dnnl.hpp>
#endif
#if MXNET_USE_OPENCV
#include <opencv2/opencv.hpp>
#endif // MXNET_USE_OPENCV
namespace dmlc {
DMLC_REGISTRY_ENABLE(::mxnet::NDArrayFunctionReg);
} // namespace dmlc
namespace mxnet {
void NDArray::ReInit(const NDArrayStorageType stype,
const mxnet::TShape& shape,
Context ctx,
int dtype,
bool delay_alloc,
const std::vector<int>* pAux_types,
const mxnet::ShapeVector* pAux_shapes,
const mxnet::TShape* pStorage_shapes) {
Init(stype, shape, dtype);
if (stype != kDefaultStorage) {
const auto sparseStorage = stype == kRowSparseStorage;
if (!sparseStorage && stype != kCSRStorage)
LOG(FATAL) << "Unknown storage type " << stype;
const auto& aux_types = (pAux_types && pAux_types->size()) ?
*pAux_types :
std::vector<int>(sparseStorage ? 1 : 2, mshadow::kInt64);
const auto& aux_shapes = (pAux_shapes && pAux_shapes->size()) ?
*pAux_shapes :
ShapeVector(sparseStorage ? 1 : 2, TShape(mshadow::Shape1(0)));
mxnet::TShape storage_shape;
if (!pStorage_shapes || !pStorage_shapes->Size()) {
if (sparseStorage) {
storage_shape = shape;
storage_shape[0] = aux_shapes[rowsparse::kIdx][0];
} else {
storage_shape = aux_shapes[csr::kIdx];
}
} else {
storage_shape = *pStorage_shapes;
}
ptr_ = std::make_shared<Chunk>(
stype, storage_shape, ctx, delay_alloc, dtype, aux_types, aux_shapes);
} else {
ptr_ = std::make_shared<Chunk>(shape, ctx, delay_alloc, dtype);
}
}
void NDArray::AssignStorageInfo(const std::string& profiler_scope, const std::string& name) {
if (is_none()) {
return;
}
ptr_->shandle.profiler_scope = profiler_scope;
ptr_->shandle.name = name;
#if MXNET_USE_CUDA
profiler::GpuDeviceStorageProfiler::Get()->UpdateStorageInfo(ptr_->shandle);
#endif // MXNET_USE_CUDA
for (Storage::Handle& aux_handle : ptr_->aux_handles) {
aux_handle.profiler_scope = profiler_scope;
aux_handle.name = name + "_aux_data";
#if MXNET_USE_CUDA
profiler::GpuDeviceStorageProfiler::Get()->UpdateStorageInfo(aux_handle);
#endif // MXNET_USE_CUDA
}
}
void NDArray::SetShapeFromChunk() const {
if (Imperative::Get()->is_np_shape() ||
!(ptr_->storage_shape.ndim() == 1 && ptr_->storage_shape[0] == 0)) {
shape_ = ptr_->storage_shape;
}
}
struct ChunkMem {
Storage::Handle h;
std::vector<Storage::Handle> aux_h;
#if MXNET_USE_ONEDNN == 1
std::shared_ptr<DNNLMemory> mem;
#endif
};
NDArray::Chunk::~Chunk() {
bool skip_free = static_data || delay_alloc;
ChunkMem mem;
mem.h = this->shandle;
mem.aux_h = this->aux_handles;
#if MXNET_USE_ONEDNN == 1
// We want to delete dnnl memory after deleting the variable.
mem.mem = this->dnnl_mem_;
#endif
if (auto engine = engine_ref_.lock()) {
engine->DeleteVariable(
[mem, skip_free, var = this->var](RunContext s) mutable {
#if MXNET_USE_CUDA
auto& sync_obj = var->sync_object;
Storage::SyncObj storage_sync_obj;
{
std::lock_guard<std::mutex> l(sync_obj.mutex);
for (auto& ev : sync_obj.reader_events) {
storage_sync_obj.events.push_back(ev.event);
}
if (!sync_obj.writer_event.empty()) {
auto ev = sync_obj.writer_event[0];
storage_sync_obj.events.push_back(ev.event);
}
}
mem.h.sync_obj = storage_sync_obj;
#endif
if (skip_free == false) {
#if MXNET_USE_ONEDNN == 1
if (mem.mem) {
CHECK_LE(mem.mem->GetSize(), mem.h.size);
CHECK_EQ(mem.mem->GetDataHandle(), mem.h.dptr);
}
#endif
Storage::Get()->Free(mem.h);
for (const auto& aux : mem.aux_h) {
Storage::Get()->Free(aux);
}
}
},
shandle.ctx,
var);
}
}
void NDArray::Chunk::CheckAndAllocData(const mxnet::TShape& shape, int dtype) {
CHECK_NE(aux_shapes.size(), 0) << "data is expected to be allocated after aux_data";
auto dbytes = shape.Size() * mshadow::mshadow_sizeof(dtype);
if (!features::is_enabled(features::INT64_TENSOR_SIZE)) {
CHECK_LT(shape.Size(), (int64_t{1} << 31) - 1)
<< "[CheckAndAllocData] Size of tensor you are trying to allocate is larger than "
"2^31 elements. Please build with flag USE_INT64_TENSOR_SIZE=1";
}
if (shandle.size < dbytes) {
// free storage
Storage::Get()->Free(shandle);
// init storage
shandle.size = dbytes;
Storage::Get()->Alloc(&shandle);
#if MXNET_USE_ONEDNN == 1
dnnl_mem_ = nullptr;
#endif
}
// init shape
storage_shape = shape;
// delay_alloc is only set when data storage handle is present
delay_alloc = false;
}
NDArray NDArray::grad() const {
if (Imperative::AGInfo::IsNone(*this))
return NDArray();
Imperative::AGInfo& info = Imperative::AGInfo::Get(autograd_entry_.node);
if (info.out_grads.size()) {
CHECK_EQ(info.out_grads.size(), 1);
return info.out_grads[0];
}
return NDArray();
}
nnvm::Symbol NDArray::get_autograd_symbol() const {
CHECK(!Imperative::AGInfo::IsNone(*this))
<< "NDArray is not part of a computation graph. Did you forget to turn on recording?";
nnvm::Symbol ret;
ret.outputs.emplace_back(autograd_entry_);
return ret;
}
#if MXNET_USE_ONEDNN == 1
NDArray::NDArray(const void* md_desc) : storage_type_(kDefaultStorage), autograd_entry_(nullptr) {
dnnl::memory::desc md = *static_cast<const dnnl::memory::desc*>(md_desc);
shape_ = mxnet::TShape(md.data.dims, md.data.dims + md.data.ndims);
dtype_ = get_mxnet_type(md.data.data_type);
ptr_ = std::make_shared<Chunk>(shape_, Context::CPU(), true, dtype_);
ptr_->CheckAndAlloc(md.get_size());
ptr_->dnnl_mem_ = std::make_shared<DNNLMemory>(md, ptr_->shandle.dptr);
}
NDArray::NDArray(const std::shared_ptr<dnnl::memory>& dnnl_mem)
: storage_type_(kDefaultStorage), autograd_entry_(nullptr) {
auto mem_desc = dnnl_mem->get_desc();
shape_ = mxnet::TShape(mem_desc.data.dims, mem_desc.data.dims + mem_desc.data.ndims);
dtype_ = get_mxnet_type(mem_desc.data.data_type);
ptr_ = std::make_shared<Chunk>(shape_, Context::CPU(), true, dtype_);
ptr_->shandle.dptr = dnnl_mem->get_data_handle();
ptr_->shandle.size = mem_desc.get_size();
ptr_->delay_alloc = false;
ptr_->dnnl_mem_ = std::make_shared<DNNLMemory>(dnnl_mem);
ptr_->static_data = true;
}
NDArray NDArray::DNNLDataReshape(const mxnet::TShape& shape) const {
CHECK(!is_none()) << "NDArray is not initialized";
CHECK_GE(shape_.Size(), shape.Size())
<< "NDArray.Reshape: target shape size is larger current shape";
CHECK_EQ(storage_type(), kDefaultStorage);
if (!IsDNNLData()) {
NDArray ret = this->Detach();
ret.shape_ = shape;
return ret;
} else {
NDArray ret(shape, ctx(), true, dtype());
// We shouldn't submit the reorder primitive here because submit will
// be called in operators.
dnnl_format_tag_t format = ptr_->dnnl_mem_->GetDefaultFormat();
CHECK(ptr_->IsDNNL());
dnnl::memory::desc def_desc = ptr_->dnnl_mem_->GetDesc(format);
dnnl::memory* def_mem = TmpMemMgr::Get()->Alloc(def_desc);
DNNLStream* stream = DNNLStream::Get();
std::shared_ptr<dnnl::memory> curr_mem = ptr_->dnnl_mem_->GetMem();
stream->RegisterMem(curr_mem);
std::unordered_map<int, dnnl::memory> args(
{{DNNL_ARG_FROM, *curr_mem}, {DNNL_ARG_TO, *def_mem}});
stream->RegisterPrimArgs(dnnl::reorder(*curr_mem, *def_mem), args);
// def_mem points to a memory region in the temp space. It's only valid
// inside an operator. As such, the returned NDArray can only be valid
// inside an operator and the shared point doesn't need to do anything
// when it's destroyed.
auto tmp = std::shared_ptr<dnnl::memory>(def_mem, [](dnnl::memory* mem) {});
ret.ptr_->dnnl_mem_.reset(new DNNLMemory(tmp));
ret.ptr_->shandle.dptr = def_mem->get_data_handle();
ret.ptr_->shandle.size = def_mem->get_desc().get_size();
ret.ptr_->delay_alloc = false;
ret.ptr_->static_data = true;
ret.byte_offset_ = byte_offset_;
ret.reuse_ = false;
return ret;
}
}
#endif
NDArray NDArray::Reshape(const mxnet::TShape& shape) const {
CHECK(!is_none()) << "NDArray is not initialized";
if (Imperative::Get()->is_np_shape()) {
CHECK_EQ(shape_.Size(), shape.Size())
<< "NDArray.Reshape: target shape must have the same size as "
<< "current shape.";
} else {
CHECK_GE(shape_.Size(), shape.Size())
<< "NDArray.Reshape: target shape size is larger than the current shape";
}
NDArray ret = this->Detach();
// If the shape doesn't change, we can just return it now.
if (ret.shape_ == shape)
return ret;
// Otherwise, reshape only works on the default layout.
CHECK_EQ(storage_type(), kDefaultStorage);
ret.shape_ = shape;
ret.reuse_ = false;
return ret;
}
NDArray NDArray::ReshapeWithRecord(const mxnet::TShape& shape) {
bool is_recording = Imperative::Get()->is_recording();
bool is_deferred_compute = Imperative::Get()->is_deferred_compute();
NDArray ret;
if (!is_deferred_compute) {
// The new array shares memory with this array, thus make sure this array
// has been computed already computed. (noop if this array is not deferred)
Imperative::DCInfo::Compute(*this);
ret = this->Reshape(shape);
if (!is_recording) {
return ret;
}
} else {
if (shape_is_known(this->shape())) {
// Imperative reshape only works if shape is already known.
ret = this->Reshape(shape);
} else {
// Reshape called on after dynamic shape operator.
ret = this->Detach();
}
}
if (!is_deferred_compute || shape_is_known(this->shape())) {
CHECK_EQ(shape_.Size(), shape.Size())
<< "NDArray.Reshape: target shape must have the same size as "
<< "current shape when recording with autograd "
<< "or in deferred compute mode.";
}
nnvm::NodeAttrs attrs;
std::ostringstream os;
os << shape;
if (!Imperative::Get()->is_np_shape()) {
attrs.op = nnvm::Op::Get("Reshape");
attrs.dict.insert({"shape", os.str()});
} else {
attrs.op = nnvm::Op::Get("_np_reshape");
attrs.dict.insert({"newshape", os.str()});
}
attrs.op->attr_parser(&attrs);
std::vector<NDArray*> inputs(1, this), outputs(1, &ret);
if (is_recording) {
Imperative::Get()->RecordOp(std::move(attrs), inputs, outputs);
} else if (is_deferred_compute) {
Imperative::Get()->RecordDeferredCompute(std::move(attrs), inputs, outputs);
}
return ret;
}
NDArray NDArray::Slice(index_t begin, index_t end) const {
CHECK(!is_none()) << "NDArray is empty";
CHECK_LE(begin, end) << "Invalid slicing range [" << begin << ", " << end << ")";
CHECK_GE(shape_[0], end) << "Slice end index out of range";
CHECK_EQ(storage_type(), kDefaultStorage);
NDArray ret = this->Detach();
size_t length = shape_.ProdShape(1, shape_.ndim());
MSHADOW_TYPE_SWITCH_EXT_WITH_BOOL(
ret.dtype(), DType, { ret.byte_offset_ += begin * length * sizeof(DType); });
ret.reuse_ = false;
ret.shape_[0] = end - begin;
return ret;
}
NDArray NDArray::SliceWithRecord(index_t begin, index_t end) {
bool is_recording = Imperative::Get()->is_recording();
bool is_deferred_compute = Imperative::Get()->is_deferred_compute();
NDArray ret;
if (!is_deferred_compute) {
// The new array shares memory with this array, thus make sure this array
// has been computed already computed. (noop if this array is not deferred)
Imperative::DCInfo::Compute(*this);
ret = this->Slice(begin, end);
if (!is_recording) {
return ret;
}
} else {
if (shape_is_known(this->shape())) {
// Imperative slice only works if shape is already known.
ret = this->Slice(begin, end);
} else {
// Slice called on after dynamic shape operator.
ret = this->Detach();
}
}
// fake a slice op
nnvm::NodeAttrs attrs;
attrs.op = nnvm::Op::Get("slice");
attrs.dict.insert({"begin", std::to_string(begin)});
attrs.dict.insert({"end", std::to_string(end)});
attrs.op->attr_parser(&attrs);
std::vector<NDArray*> inputs(1, this), outputs(1, &ret);
if (is_recording) {
Imperative::Get()->RecordOp(std::move(attrs), inputs, outputs);
} else if (is_deferred_compute) {
Imperative::Get()->RecordDeferredCompute(std::move(attrs), inputs, outputs);
}
return ret;
}
NDArray NDArray::At(index_t idx) const {
CHECK(storage_type() == kDefaultStorage)
<< "Storage type " << storage_type() << " doesn't support At()";
NDArray ret = this->Slice(idx, idx + 1);
if (shape_.ndim() > 1) {
return ret.Reshape(mxnet::TShape(shape_.data() + 1, shape_.data() + shape_.ndim()));
} else {
return ret;
}
}
NDArray NDArray::AtWithRecord(index_t idx) {
CHECK(storage_type() == kDefaultStorage)
<< "Storage type " << storage_type() << " doesn't support At()";
NDArray sliced = this->SliceWithRecord(idx, idx + 1);
if (shape_.ndim() > 1 || Imperative::Get()->is_np_shape()) {
// Imperative reshape with concrete shape
NDArray reshaped =
sliced.Reshape(mxnet::TShape(shape_.data() + 1, shape_.data() + shape_.ndim()));
// Record reshape with magic numbers
nnvm::NodeAttrs attrs;
std::ostringstream os;
if (!Imperative::Get()->is_np_shape()) {
os << mxnet::TShape({-3, -2}); // See ndarray.py reshape for definition of magic numbers
attrs.op = nnvm::Op::Get("Reshape");
attrs.dict.insert({"shape", os.str()});
} else {
// See NumpyXReshapeInferShape for definition of magic numbers
os << mxnet::TShape({-3, -4});
attrs.op = nnvm::Op::Get("_npx_reshape");
attrs.dict.insert({"newshape", os.str()});
}
attrs.op->attr_parser(&attrs);
std::vector<NDArray*> inputs(1, &sliced), outputs(1, &reshaped);
bool is_recording = Imperative::Get()->is_recording();
bool is_deferred_compute = Imperative::Get()->is_deferred_compute();
if (is_recording) {
Imperative::Get()->RecordOp(std::move(attrs), inputs, outputs);
} else if (is_deferred_compute) {
Imperative::Get()->RecordDeferredCompute(std::move(attrs), inputs, outputs);
}
return reshaped;
} else {
return sliced;
}
}
/*!
* \brief Return deep copy of the current ndarry's aux_data(i)
* as an NDArray of default storage type. This function blocks.
*/
NDArray NDArray::aux_ndarray(size_t i) const {
CHECK_NE(storage_type(), kDefaultStorage);
CHECK(i < ptr_->aux_shapes.size());
// create a delay_alloc default ndarray as output
NDArray ret(mxnet::TShape(), ctx(), true, aux_type(i));
ret.SyncCopyFromNDArray(*this, i);
return ret;
}
NDArray NDArray::data_ndarray() const {
NDArray ret(mxnet::TShape(), ctx(), true, dtype_);
ret.SyncCopyFromNDArray(*this);
return ret;
}
struct NDArrayDLManager {
NDArray handle; // ref NDArray
DLManagedTensor tensor;
};
DLManagedTensor* NDArray::ToDLPack() const {
CHECK(!is_none()) << "NDArray is not initialized";
NDArrayDLManager* dlmanager(new NDArrayDLManager);
dlmanager->handle = *this;
dlmanager->tensor.dl_tensor = dlmanager->handle.data().dltensor();
dlmanager->tensor.manager_ctx = dlmanager;
dlmanager->tensor.deleter = [](DLManagedTensor* dlmanager) {
delete static_cast<NDArrayDLManager*>(dlmanager->manager_ctx);
};
return &(dlmanager->tensor);
}
NDArray NDArray::FromDLPack(const DLManagedTensor* tensor, bool transient_handle) {
DLManagedTensor* tensor_copy =
transient_handle ? new DLManagedTensor(*tensor) : const_cast<DLManagedTensor*>(tensor);
auto deleter = [tensor_copy, transient_handle]() {
if (tensor_copy->deleter != nullptr) {
tensor_copy->deleter(tensor_copy);
}
if (transient_handle) {
delete tensor_copy;
}
};
return NDArray(TBlob(tensor_copy->dl_tensor), tensor_copy->dl_tensor.ctx.device_id, deleter);
}
bool NDArray::fresh_out_grad() const {
if (Imperative::AGInfo::IsNone(*this))
return false;
Imperative::AGInfo& info = Imperative::AGInfo::Get(autograd_entry_.node);
return info.fresh_out_grad;
}
void NDArray::set_fresh_out_grad(bool state) const {
CHECK(!Imperative::AGInfo::IsNone(*this))
<< "NDArray has not been marked as a variable and does not have gradient state";
Imperative::AGInfo& info = Imperative::AGInfo::Get(autograd_entry_.node);
info.fresh_out_grad = state;
}
#if MXNET_USE_ONEDNN == 1
bool NDArray::Chunk::IsDNNL() const {
if (storage_type != kDefaultStorage)
return false;
if (dnnl_mem_ == nullptr)
return false;
return dnnl_mem_->IsDNNL();
}
bool NDArray::Chunk::IsDefault() const {
if (storage_type != kDefaultStorage)
return false;
// If we don't have dnnl memory yet, we just assume it's not the default
// format.
if (dnnl_mem_ == nullptr)
return true;
return !dnnl_mem_->IsDNNL();
}
void NDArray::Chunk::Reorder2Default() {
if (dnnl_mem_ == nullptr)
return;
if (IsDefault())
return;
dnnl_format_tag_t format = dnnl_mem_->GetDefaultFormat();
dnnl::memory::desc def_desc = dnnl_mem_->GetDesc(format);
CHECK(shandle.size >= def_desc.get_size());
CheckAndAlloc(def_desc.get_size());
// oneDNN reorder can't be performed in-place
if (shandle.dptr == dnnl_mem_->GetDataHandle()) {
dnnl_mem_ptr def_mem(new dnnl::memory(def_desc, CpuEngine::Get()->get_engine()));
dnnl_mem_->ReorderTo(def_mem.get());
memcpy(shandle.dptr, def_mem->get_data_handle(), def_desc.get_size());
} else {
dnnl_mem_ptr def_mem(new dnnl::memory(def_desc, CpuEngine::Get()->get_engine(), shandle.dptr));
dnnl_mem_->ReorderTo(def_mem.get());
}
dnnl_mem_ = nullptr;
}
void NDArray::Chunk::DNNLDataReorder(const void* mem_desc) {
const dnnl::memory::desc md = *static_cast<const dnnl::memory::desc*>(mem_desc);
// If the memory already uses the specified layout, don't do anything.
if (dnnl_mem_ != nullptr && dnnl_mem_->SameFormat(md))
return;
// If the memory is default, don't do anything.
if (!mxnet::IsDNNL(md) && IsDefault())
return;
if (!mxnet::IsDNNL(md)) {
// If the specified layout is default, we should use Reorder2Default.
Reorder2Default();
return;
}
auto engine = CpuEngine::Get()->get_engine();
dnnl::stream s(engine);
std::shared_ptr<dnnl::memory> new_mem(new dnnl::memory(md, engine));
std::shared_ptr<dnnl::memory> old_mem;
if (IsDefault()) {
dnnl_format_tag_t def_format = GetDefaultFormat(md);
dnnl::memory::desc def_desc = GetDesc(md, def_format);
old_mem.reset(new dnnl::memory(def_desc, engine, shandle.dptr));
} else {
old_mem = this->dnnl_mem_->GetMem();
}
CHECK(old_mem->get_desc().data.ndims == md.data.ndims);
// This may be called in DNNL operators. We can't use DNNLStream here.
dnnl::reorder(*old_mem, *new_mem).execute(s, *old_mem, *new_mem);
CHECK(shandle.size >= md.get_size());
CheckAndAlloc(md.get_size());
// TODO(zhengda) We need to avoid memory copy here.
memcpy(shandle.dptr, new_mem->get_data_handle(), md.get_size());
dnnl_mem_.reset(new DNNLMemory(md, shandle.dptr));
}
void NDArray::Chunk::SetDNNLMem(const mxnet::TShape& shape, int dtype) {
// The shape of the array and the one of the DNNL memory may mismatch.
// For example, if the array stores parameters, the DNNL memory may store data
// in 5 dimensions while the NDArray stores data in 4 dimensions.
if (dnnl_mem_ && dnnl_mem_->GetDataHandle() == shandle.dptr &&
dnnl_mem_->SameFormat(shape, dtype)) {
return;
}
dnnl::memory::dims dims;
// These are shapes supprted by DNNL.
const int MAX_ONEDNN_DIMS = 12;
if (shape.ndim() >= 1 && shape.ndim() <= MAX_ONEDNN_DIMS) {
dims.resize(shape.ndim());
for (size_t i = 0; i < dims.size(); i++)
dims[i] = shape[i];
} else {
LOG(FATAL) << "oneDNN doesn't support " << shape.ndim() << " dimensions";
}
auto layout = static_cast<dnnl::memory::format_tag>(GetDefaultFormat(dims.size()));
dnnl::memory::desc data_md{dims, get_dnnl_type(dtype), layout};
if (shandle.dptr == nullptr) {
CHECK(delay_alloc);
CheckAndAlloc();
}
CHECK(shandle.size >= data_md.get_size());
dnnl_mem_.reset(new DNNLMemory(data_md, shandle.dptr));
}
const dnnl::memory* NDArray::GetDNNLData(const void* mem_desc) const {
const dnnl::memory::desc desc = *static_cast<const dnnl::memory::desc*>(mem_desc);
if (desc.get_size() != shape().Size() * GetTypeSize(dtype_)) {
LOG(FATAL) << "The size of NDArray doesn't match the requested oneDNN memory desc";
return nullptr;
}
const dnnl::memory* mem = GetDNNLData();
dnnl::memory::desc desc1 = mem->get_desc();
// The DNNL memory has the same format and shape as required,
// or both use the default format, we can return the DNNL memory.
if (desc1 == desc || ((!mxnet::IsDNNL(desc1)) && (!mxnet::IsDNNL(desc)))) {
return GetDNNLExact(mem, desc);
} else {
return nullptr;
}
}
const dnnl::memory* NDArray::GetDNNLDataReorder(const void* mem_desc) const {
dnnl::memory::desc new_desc = *static_cast<const dnnl::memory::desc*>(mem_desc);
CHECK(storage_type() == kDefaultStorage);
const dnnl::memory* mem = GetDNNLData();
// If the memory descriptor matches, it's easy.
DNNLStream* stream = DNNLStream::Get();
if (mem->get_desc() == new_desc) {
return GetDNNLExact(mem, new_desc);
}
dnnl::memory::desc old_desc = mem->get_desc();
// Now we need to determine if we should reorder the memory.
// If both use the default formats, we think we don't need to reorder.
if ((!mxnet::IsDNNL(old_desc)) && (!mxnet::IsDNNL(new_desc))) {
dnnl_mem_ptr ret(
new dnnl::memory(new_desc, CpuEngine::Get()->get_engine(), mem->get_data_handle()));
stream->RegisterMem(ret);
return ret.get();
} else if (same_shape(old_desc, new_desc)) {
// If they have the same shape, we can reorder data directly.
dnnl::memory* ret = TmpMemMgr::Get()->Alloc(new_desc);
std::unordered_map<int, dnnl::memory> args({{DNNL_ARG_FROM, *mem}, {DNNL_ARG_TO, *ret}});
stream->RegisterPrimArgs(dnnl::reorder(*mem, *ret), args);
return ret;
} else {
// If they have different shapes, we need to reshape the array first.
// Since this method will only be used inside an operator, we can call
// DNNLDataReshape to reshape an array.
mxnet::TShape required_shape(new_desc.data.ndims, -1);
for (int i = 0; i < new_desc.data.ndims; i++)
required_shape[i] = new_desc.data.dims[i];
NDArray reshaped = DNNLDataReshape(required_shape);
const dnnl::memory* ret = reshaped.GetDNNLData();
if (ret->get_desc() == new_desc) {
return GetDNNLExact(ret, new_desc);
} else {
dnnl::memory* ret2 = TmpMemMgr::Get()->Alloc(new_desc);
std::unordered_map<int, dnnl::memory> args({{DNNL_ARG_FROM, *ret}, {DNNL_ARG_TO, *ret2}});
stream->RegisterPrimArgs(dnnl::reorder(*ret, *ret2), args);
return ret2;
}
}
}
NDArray NDArray::Reorder2Default() const {
CHECK(storage_type() == kDefaultStorage);
if (ptr_->dnnl_mem_ == nullptr)
return *this;
if (!ptr_->dnnl_mem_->IsDNNL())
return *this;
// create new ndarray from dnnl layout
dnnl::memory::desc from_desc = ptr_->dnnl_mem_->GetDesc();
mxnet::TShape tshape(from_desc.data.ndims, -1);
for (int i = 0; i < from_desc.data.ndims; i++)
tshape[i] = from_desc.data.dims[i];
NDArray ret(tshape, ctx(), false, dtype());
dnnl_format_tag_t format = ptr_->dnnl_mem_->GetDefaultFormat();
dnnl::memory::desc def_desc = ptr_->dnnl_mem_->GetDesc(format);
CHECK(ret.ptr_->shandle.size >= def_desc.get_size());
dnnl::memory def_mem(def_desc, CpuEngine::Get()->get_engine(), ret.ptr_->shandle.dptr);
ptr_->dnnl_mem_->ReorderTo(&def_mem);
// reshape as needed
ret.shape_ = shape_;
ret.byte_offset_ = byte_offset_;
ret.reuse_ = false;
return ret;
}
void NDArray::SelfReorder2Default() {
if (!IsDNNLData())
return;
CHECK(storage_type() == kDefaultStorage);
const auto dnnl_mem = ptr_->dnnl_mem_;
if (dnnl_mem == nullptr || !dnnl_mem->IsDNNL())
return;
// create new ndarray from dnnl layout
dnnl::memory::desc from_desc = dnnl_mem->GetDesc();
mxnet::TShape tshape(from_desc.data.ndims, -1);
for (int i = 0; i < from_desc.data.ndims; i++)
tshape[i] = from_desc.data.dims[i];
const auto saved_shape = shape_;
const auto saved_byte_offset = byte_offset_;
this->ReInit(kDefaultStorage, tshape, ctx(), dtype(), false);
dnnl_format_tag_t format = dnnl_mem->GetDefaultFormat();
dnnl::memory::desc def_desc = dnnl_mem->GetDesc(format);
CHECK(ptr_->shandle.size >= def_desc.get_size());
dnnl::memory def_mem(def_desc, CpuEngine::Get()->get_engine(), ptr_->shandle.dptr);
dnnl_mem->ReorderTo(&def_mem);
// reshape as needed
shape_ = saved_shape;
byte_offset_ = saved_byte_offset;
reuse_ = false;
}
void NDArray::Reorder2DefaultAsync() const {
std::vector<Engine::VarHandle> const_vars;
std::vector<Engine::VarHandle> mutable_vars(1, this->var());
NDArray tmp = *this;
Engine::Get()->PushAsync(
[tmp](RunContext ctx,
Engine::CallbackOnStart on_start,
Engine::CallbackOnComplete on_complete) {
on_start();
tmp.ptr_->Reorder2Default();
on_complete();
},
ctx(),
const_vars,
mutable_vars,
FnProperty::kNormal,
0,
"Reorder2Default");
}
// now just support bf16->fp32
NDArray NDArray::Reorder2DefaultFloatFormat() const {
CHECK(storage_type() == kDefaultStorage && IsView() == false);
if (dtype() != mshadow::kBfloat16) {
return Reorder2Default();
}
NDArray ret(shape(), ctx(), false, mshadow::DataType<float>::kFlag);
auto src_mem = GetDNNLData();
auto dst_mem = ret.GetDNNLData();
ReorderTo(src_mem, dst_mem);
return ret;
}
void NDArray::DNNLDataReorderAsync(const void* mem_desc) const {
dnnl::memory::desc desc = *static_cast<const dnnl::memory::desc*>(mem_desc);
std::vector<Engine::VarHandle> const_vars;
std::vector<Engine::VarHandle> mutable_vars(1, this->var());
NDArray tmp = *this;
const auto version = this->version();
Engine::Get()->PushAsync(
[tmp, version, desc](RunContext ctx,
Engine::CallbackOnStart on_start,
Engine::CallbackOnComplete on_complete) {
on_start();
// MXNet will try to reuse NDArray from memory planning, so we need to ensure
// the NDArray is still holding the original trunk data.
if (tmp.version() == version) {
tmp.ptr_->DNNLDataReorder(&desc);
}
on_complete();
},
ctx(),
const_vars,
mutable_vars,
FnProperty::kNormal,
0,
"Reorder");
}
const dnnl::memory* NDArray::GetDNNLData() const {
CHECK(storage_type() == kDefaultStorage);
const auto is_view = IsView();
if (IsDNNLData()) {
// If this array uses DNNL layout, we have to make sure it's not a view.
// Otherwise, we'll have to change the layout inside the array.
CHECK(!is_view);
DNNLStream::Get()->RegisterMem(ptr_->dnnl_mem_->GetMem());
// If this array uses DNNL format, we should return now. Otherwise,
// SetDNNLMem may mess up dnnl_mem_.
return ptr_->dnnl_mem_->GetRaw();
}
CheckAndAlloc();
if (is_view) {
// If this is a view, we can't create a DNNL memory for the chunk
// because we don't have the complete data type and shape information for
// the chunk.
void* off_addr = static_cast<char*>(ptr_->shandle.dptr) + byte_offset_;
// Create the primitive desc for the new dnnl memory.
dnnl::memory::dims dims(shape().ndim());
for (size_t i = 0; i < dims.size(); i++)
dims[i] = shape()[i];
const auto cpp_format = static_cast<dnnl::memory::format_tag>(GetDefaultFormat(shape().ndim()));
dnnl::memory::desc data_md(dims, get_dnnl_type(dtype_), cpp_format);
std::shared_ptr<dnnl::memory> ret(
new dnnl::memory(data_md, CpuEngine::Get()->get_engine(), off_addr));
DNNLStream::Get()->RegisterMem(ret);
return ret.get();
}
// If this isn't a view, we can create a DNNL memory and store it in the chunk
ptr_->SetDNNLMem(shape_, dtype_);
DNNLStream::Get()->RegisterMem(ptr_->dnnl_mem_->GetMem());
return ptr_->dnnl_mem_->GetRaw();
}
void NDArray::InvalidateDNNLData() {
// Removing dnnl_mem_ means the NDArray will store data in the default format.
if (ptr_->dnnl_mem_ && ptr_->dnnl_mem_->IsDNNL())
ptr_->dnnl_mem_ = nullptr;
}
void NDArray::CopyFrom(const dnnl::memory& mem) {
CHECK(ptr_ != nullptr) << "The NDArray hasn't been initialized";
if (ptr_->dnnl_mem_ && ptr_->dnnl_mem_->GetRaw() == &mem)
return;
CHECK(mem.get_desc().get_size() == shape().Size() * GetTypeSize(dtype_))
<< "The size of NDArray doesn't match the requested oneDNN memory desc";
// If this array uses DNNL layout, we have to make sure it's not a view.
// Otherwise, we'll have to change the layout inside the array.
if (IsDNNLData() && IsView())
ptr_->Reorder2Default();
const dnnl::memory* this_mem = GetDNNLData();
DNNLMemoryCopy(mem, this_mem);
}
dnnl::memory* NDArray::CreateDNNLData(const void* mem_desc) {
dnnl::memory::desc desc = *static_cast<const dnnl::memory::desc*>(mem_desc);
if (desc.get_size() != shape().Size() * GetTypeSize(dtype_)) {
LOG(FATAL) << "The size of NDArray doesn't match the requested oneDNN memory desc. "
<< "oneDNN memory requests for " << desc.get_size() << " bytes, but got "
<< shape().Size() * GetTypeSize(dtype_) << " bytes from NDArray";
return nullptr;
}
bool isDefaultFormat = IsDefaultFormat(desc);
if (isDefaultFormat && !IsView()) {
ptr_->SetDNNLMem(shape_, dtype_);
DNNLStream::Get()->RegisterMem(ptr_->dnnl_mem_->GetMem());
return GetDNNLExact(ptr_->dnnl_mem_->GetRaw(), desc);
} else if (isDefaultFormat) {
ptr_->CheckAndAlloc();
CHECK(ptr_->shandle.dptr);
// When this is a view and a user wants the default layout, we can simply
// create a new dnnl memory that points to the right memory.
std::shared_ptr<dnnl::memory> mem(
new dnnl::memory(desc,
CpuEngine::Get()->get_engine(),
static_cast<char*>(ptr_->shandle.dptr) + byte_offset_));
DNNLStream::Get()->RegisterMem(mem);
return mem.get();
} else if (IsView()) {
// If this is a view and a user wants to write data to it with special
// a DNNL format, we should reorder the data in the array and return NULL.
// In this way, the user will create a new NDArray for the special format
// and copy data back.
ptr_->Reorder2Default();
return nullptr;
}
if (ptr_->dnnl_mem_)
CHECK(ptr_->dnnl_mem_->GetDataHandle() == ptr_->shandle.dptr);
if (ptr_->dnnl_mem_ && ptr_->dnnl_mem_->GetDesc() == desc) {
DNNLStream::Get()->RegisterMem(ptr_->dnnl_mem_->GetMem());
return GetDNNLExact(ptr_->dnnl_mem_->GetRaw(), desc);
}
CHECK(ptr_->shandle.size >= desc.get_size());
ptr_->CheckAndAlloc(desc.get_size());
ptr_->dnnl_mem_.reset(new DNNLMemory(desc, ptr_->shandle.dptr));
DNNLStream::Get()->RegisterMem(ptr_->dnnl_mem_->GetMem());
return ptr_->dnnl_mem_->GetRaw();
}
void NDArray::UpdateDNNLMemDesc(const void* mem_desc) {
dnnl::memory::desc desc = *static_cast<const dnnl::memory::desc*>(mem_desc);
auto new_desc = desc;
auto this_dtype = get_dnnl_type(dtype());
new_desc.data.data_type = static_cast<dnnl_data_type_t>(this_dtype);
ptr_->dnnl_mem_.reset(new DNNLMemory(new_desc, ptr_->shandle.dptr));
DNNLStream::Get()->RegisterMem(ptr_->dnnl_mem_->GetMem());
}
#endif
void NDArray::SetTBlob() const {
CHECK(ptr_ != nullptr);
mxnet::TShape shape = shape_;
char* dptr = static_cast<char*>(ptr_->shandle.dptr);
auto stype = storage_type();
if (stype == kDefaultStorage) {
#if MXNET_USE_ONEDNN == 1
CHECK(!IsDNNLData()) << "We can't generate TBlob for oneDNN data. "
<< "Please use Reorder2Default() to generate a new NDArray first";
#endif
dptr += byte_offset_;
} else if (stype == kCSRStorage || stype == kRowSparseStorage) {
CHECK_EQ(byte_offset_, 0);
shape = storage_shape();
} else {
LOG(FATAL) << "unknown storage type " << stype;
}
tblob_.dptr_ = dptr;
tblob_.shape_ = shape;
tblob_.type_flag_ = dtype_;
tblob_.SetDLTensor(ptr_->shandle.ctx.dev_mask(), ptr_->shandle.ctx.dev_id);
}
/*!
* \brief run a ternary operation
* \param lhs left operand
* \param mhs middle operand
* \param rhs right operand
* \param out the output ndarray
*/
template <typename OP>
void TernaryOp(const NDArray& lhs, const NDArray& mhs, const NDArray& rhs, NDArray* out) {
// no check if all of them are on cpu
if (lhs.ctx().dev_mask() != cpu::kDevMask || mhs.ctx().dev_mask() != cpu::kDevMask ||
rhs.ctx().dev_mask() != cpu::kDevMask) {
CHECK((lhs.ctx() == mhs.ctx()) && (mhs.ctx() == rhs.ctx())) << "operands context mismatch";
}
// if out is none, allocate space
if (out->is_none()) {
*out = NDArray(OP::GetShape(lhs.shape(), mhs.shape(), rhs.shape()), lhs.ctx(), true);
} else {
// no check if both of them are on cpu
if (lhs.ctx().dev_mask() != cpu::kDevMask || out->ctx().dev_mask() != cpu::kDevMask) {
CHECK(out->ctx() == lhs.ctx()) << "target context mismatch";
}
CHECK(out->shape() == OP::GetShape(lhs.shape(), mhs.shape(), rhs.shape()))
<< "target shape mismatch";
}
// important: callback must always capture by value
NDArray ret = *out;
// get the const variables
std::vector<Engine::VarHandle> const_vars;
if (lhs.var() != ret.var())
const_vars.push_back(lhs.var());
if (mhs.var() != ret.var())
const_vars.push_back(mhs.var());
if (rhs.var() != ret.var())
const_vars.push_back(rhs.var());
// redirect everything to mshadow operations
switch (lhs.ctx().dev_mask()) {
case cpu::kDevMask: {
Engine::Get()->PushSync(
[lhs, mhs, rhs, ret](RunContext ctx) {
TBlob tmp = ret.data();
ndarray::Eval<cpu, OP>(lhs.data(), mhs.data(), rhs.data(), &tmp, ctx);
},
lhs.ctx(),
const_vars,
{ret.var()},
FnProperty::kNormal,
0,
PROFILER_MESSAGE_FUNCNAME);
break;