This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
/
Copy pathparameter.py
765 lines (679 loc) · 31.7 KB
/
parameter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# coding: utf-8
# pylint: disable=unnecessary-pass, too-many-lines
"""Neural network parameter."""
__all__ = ['DeferredInitializationError', 'Parameter', 'Constant',
'tensor_types']
import uuid
import warnings
import weakref
import numpy as np
from ..base import mx_real_t, MXNetError
from .. import symbol, ndarray, initializer, device as _device, _deferred_compute as dc
from ..device import Device, cpu
from .. import autograd
from .utils import shape_is_known
from ..util import is_np_shape, is_np_array, wrap_ctx_to_device_func
from .. import numpy as _mx_np # pylint: disable=reimported
# pylint: disable= invalid-name
tensor_types = (symbol.Symbol, ndarray.NDArray)
# pylint: enable= invalid-name
class DeferredInitializationError(MXNetError):
"""Error for unfinished deferred initialization."""
pass
class Parameter(object):
"""A Container holding parameters (weights) of Blocks.
:py:class:`Parameter` holds a copy of the parameter on each :py:class:`Device` after
it is initialized with ``Parameter.initialize(...)``. If :py:attr:`grad_req` is
not ``'null'``, it will also hold a gradient array on each :py:class:`Device`::
device = mx.gpu(0)
x = mx.np.zeros((16, 100), device=device)
w = mx.gluon.Parameter('fc_weight', shape=(64, 100), init=mx.init.Xavier())
b = mx.gluon.Parameter('fc_bias', shape=(64,), init=mx.init.Zero())
w.initialize(device=device)
b.initialize(device=device)
out = mx.npx.fully_connected(x, w.data(device), b.data(device), num_hidden=64)
Parameters
----------
name : str, default 'weight'
Name of this parameter. It decides the corresponding default initializer.
grad_req : {'write', 'add', 'null'}, default 'write'
Specifies how to update gradient to grad arrays.
- ``'write'`` means everytime gradient is written to grad :py:class:`NDArray`.
- ``'add'`` means everytime gradient is added to the grad :py:class:`NDArray`. You need
to manually call ``zero_grad()`` to clear the gradient buffer before each
iteration when using this option.
- 'null' means gradient is not requested for this parameter. gradient arrays
will not be allocated.
shape : int or tuple of int, default None
Shape of this parameter. By default shape is not specified. Parameter with
unknown shape can be used for :py:class:`Symbol` API, but ``init`` will throw an error
when using :py:class:`NDArray` API.
dtype : numpy.dtype or str, default 'float32'
Data type of this parameter. For example, ``numpy.float32`` or ``'float32'``.
lr_mult : float, default 1.0
Learning rate multiplier. Learning rate will be multiplied by lr_mult
when updating this parameter with optimizer.
wd_mult : float, default 1.0
Weight decay multiplier (L2 regularizer coefficient). Works similar to lr_mult.
init : Initializer, default None
Initializer of this parameter. Will use the global initializer by default.
stype: {'default', 'row_sparse', 'csr'}, defaults to 'default'.
The storage type of the parameter.
grad_stype: {'default', 'row_sparse', 'csr'}, defaults to 'default'.
The storage type of the parameter's gradient.
Attributes
----------
grad_req : {'write', 'add', 'null'}
This can be set before or after initialization. Setting ``grad_req`` to ``'null'``
with ``x.grad_req = 'null'`` saves memory and computation when you don't
need gradient w.r.t x.
lr_mult : float
Local learning rate multiplier for this Parameter. The actual learning rate
is calculated with ``learning_rate * lr_mult``. You can set it with
``param.lr_mult = 2.0``
wd_mult : float
Local weight decay multiplier for this Parameter.
"""
def __init__(self, name='weight', grad_req='write', shape=None, dtype=mx_real_t,
lr_mult=1.0, wd_mult=1.0, init=None, allow_deferred_init=False,
differentiable=True, stype='default', grad_stype='default'):
self._var = None
self._uuid = str(uuid.uuid4())
self._var_name = None
self._data = None
self._grad = None
self._device_list = None
self._device_map = None
self._trainer = None
self._deferred_init = ()
self._differentiable = differentiable
self._allow_deferred_init = allow_deferred_init
self._grad_req = None
if isinstance(shape, int):
shape = (shape,)
self._shape = shape
self._name = name
self._dtype = dtype
self.lr_mult = lr_mult
self.wd_mult = wd_mult
self.grad_req = grad_req
self.init = init
# sparse related storage type information
valid_stypes = ['default', 'row_sparse', 'csr']
assert grad_stype in valid_stypes, "grad_stype for Parameter must be " \
f"one of 'default', 'row_sparse', or 'csr', but got '{grad_stype}'"
assert stype in valid_stypes, "stype for Parameter must be " \
f"one of 'default', 'row_sparse', or 'csr', but got '{stype}'"
self._grad_stype = grad_stype
self._stype = stype
def __repr__(self):
s = 'Parameter (shape={shape}, dtype={dtype})'
return s.format(shape=self.shape, dtype=self.dtype)
@property
def grad_req(self):
return self._grad_req
@property
def name(self):
return self._name
@grad_req.setter
def grad_req(self, req):
assert req in ['write', 'add', 'null'], \
f"grad_req must be one of 'write', 'add', or 'null', but got '{req}'"
if not self._differentiable:
req = 'null'
if self._grad_req == req:
return
self._grad_req = req
if req == 'null' and self._grad is not None:
self._grad = None
self._data = [i.detach() for i in self._data]
elif self._data is not None:
self._init_grad()
@property
def dtype(self):
"""The type of the parameter.
Setting the dtype value is equivalent to casting the value of the parameter
"""
return self._dtype
@dtype.setter
def dtype(self, dtype):
self.cast(dtype)
@property
def shape(self):
"""The shape of the parameter.
By default, an unknown dimension size is 0. However, when the NumPy semantic
is turned on, unknown dimension size is -1.
"""
if self._shape is None:
return None
elif is_np_shape():
# Parameters shouldn't be zero-size. If one of its dimension is 0,
# it means the parameter isn't initialized. In the NumPy semantics,
# the unknown dimension should be marked with -1.
return tuple(i if i != 0 else -1 for i in self._shape)
else:
return self._shape
@shape.setter
def shape(self, new_shape):
if self._shape is None:
self._shape = new_shape
return
assert len(self._shape) == len(new_shape) and \
all(j in (-1, 0, i) for i, j in zip(new_shape, self._shape)), \
f"Expected shape {str(new_shape)} is incompatible with given shape {str(self._shape)} for Parameter {str(self.name)}."
# -1 means unknown dim size in np_shape mode
self._shape = new_shape
def _set_trainer(self, trainer):
""" Set the trainer this parameter is associated with. """
# trainer cannot be replaced for sparse params
if self._stype != 'default' and self._trainer and trainer and self._trainer() is not trainer:
raise RuntimeError(
f"Failed to set the trainer for Parameter '{self.name}' because it was already set. " \
f"More than one trainers for a {self._stype} Parameter is not supported.")
if trainer is not None:
self._trainer = weakref.ref(trainer)
else:
self._trainer = trainer
def _check_and_get(self, arr_list, device):
if arr_list is not None:
if device is list:
return arr_list
if device is None:
if len(arr_list) == 1:
return arr_list[0]
else:
device = _device.current_device()
device_list = self._device_map[device.device_typeid&1]
if device.device_id < len(device_list):
idx = device_list[device.device_id]
if idx is not None:
return arr_list[idx]
raise RuntimeError(
f"Parameter '{self.name}' was not initialized on device {str(device)}. "
f"It was only initialized on {str(self._device_list)}.")
if self._deferred_init:
raise DeferredInitializationError(
f"Parameter '{self.name}' has not been initialized yet because initialization was " \
"deferred. Actual initialization happens during the first forward pass. " \
"Please pass one batch of data through the network before accessing Parameters. " \
"You can also avoid deferred initialization by specifying in_units, " \
"num_features, etc., for network layers.")
raise RuntimeError(
f"Parameter '{self.name}' has not been initialized. Note that " \
"you should initialize parameters and create Trainer " \
"with Block.collect_params() instead of Block.params " \
"because the later does not include Parameters of " \
"nested child Blocks")
@wrap_ctx_to_device_func
def _get_row_sparse(self, arr_list, device, row_id):
""" Get row_sparse data from row_sparse parameters based on row_id. """
# get row sparse params based on row ids
if not isinstance(row_id, ndarray.NDArray):
raise TypeError(f"row_id must have NDArray type, but {type(row_id)} is given")
trainer = self._trainer() if self._trainer else None
if not trainer:
raise RuntimeError(f"Cannot get row_sparse data for Parameter '{self.name}' when no " \
"Trainer is created with it.")
results = self._check_and_get(arr_list, device)
# fetch row sparse params from the trainer
trainer._row_sparse_pull(self, results, row_id)
return results
@wrap_ctx_to_device_func
def _load_init(self, data, device, cast_dtype=False, dtype_source='current'):
"""
(Re)initializes by loading from data.
Parameters
----------
data : NDArray
The data to load
device : Device or list of Device
Device(s) initialize loaded parameters on.
cast_dtype : bool, default False
Cast the data type of the parameter
dtype_source : str, default 'current'
must be in {'current', 'saved'}
Only valid if cast_dtype=True, specify the source of the dtype for casting
the parameters
"""
if cast_dtype:
assert dtype_source in ['current', 'saved']
if self.shape:
unknown_dim_size = -1 if is_np_shape() else 0
for self_dim, data_dim in zip(self.shape, data.shape):
assert self_dim in (unknown_dim_size, data_dim), \
f"Failed loading Parameter '{self.name}' from saved params: " \
f"shape incompatible expected {str(self.shape)} vs saved {str(data.shape)}"
self.shape = tuple(i if i != unknown_dim_size else j
for i, j in zip(self.shape, data.shape))
if self.dtype:
if cast_dtype and self.dtype != data.dtype:
if dtype_source == 'current':
data = data.astype(self.dtype, copy=False)
elif dtype_source == 'saved':
self.dtype = data.dtype
else:
assert self.dtype == data.dtype, \
f"Failed loading Parameter '{self.name}' from saved params: " \
f"dtype incompatible expected {str(self.dtype)} vs saved {str(data.dtype)}. " \
"Set cast_dtype=True to cast the dtype of saved params."
if self._stype != data.stype:
data = data.tostype(self._stype)
if isinstance(device, Device):
device = [device]
if self._data is None:
if self._deferred_init:
assert device is None or set(device) == set(self._deferred_init[1]), \
f"Failed to load Parameter '{self.name}' on {str(device)} because it was " \
f"previous initialized on {str(self.list_device())}."
device = self._deferred_init[1]
elif device is None:
device = [cpu()]
self._init_impl(data, device)
else:
assert device is None or set(device) == set(self.list_device()), \
f"Failed to load Parameter '{self.name}' on {str(device)} because it was " \
f"previous initialized on {str(self.list_device())}."
self.set_data(data)
self._deferred_init = ()
def _finish_deferred_init(self):
"""Finishes deferred initialization."""
if not self._deferred_init:
return
init, device, default_init, data = self._deferred_init
self._deferred_init = ()
assert shape_is_known(self.shape), \
f"Cannot initialize Parameter '{self.name}' because it has " \
f"invalid shape: {str(self.shape)}. Please specify in_units, " \
"in_channels, etc for `Block`s."
with autograd.pause(), dc.context(False):
if data is None:
if is_np_array():
kwargs = {'shape': self.shape, 'dtype': self.dtype, 'device': cpu()}
if self._stype != 'default':
raise ValueError("Currently stype {} is not supported in NumPy interface and Gluon2.0"
.format(self._stype))
zeros_fn = _mx_np.zeros
else:
kwargs = {'shape': self.shape, 'dtype': self.dtype, 'ctx': cpu()}
kwargs['stype'] = self._stype
zeros_fn = ndarray.zeros
data = zeros_fn(**kwargs)
initializer.create(default_init)(
initializer.InitDesc(self.name, {'__init__': init}), data)
self._init_impl(data, device)
def _init_impl(self, data, device_list):
"""Sets data and grad."""
self._device_list = list(device_list)
self._device_map = [[], []]
for i, device in enumerate(self._device_list):
dev_list = self._device_map[device.device_typeid&1]
while len(dev_list) <= device.device_id:
dev_list.append(None)
dev_list[device.device_id] = i
self._data = [data.copyto(device) for device in self._device_list]
self._init_grad()
def _init_grad(self):
"""Initialize grad buffers."""
if self.grad_req == 'null':
self._grad = None
return
if is_np_array():
if self._grad_stype != 'default':
raise ValueError("Currently stype {} is not supported in NumPy interface and Gluon2.0"
.format(self._grad_stype))
self._grad = [_mx_np.zeros(shape=i.shape, dtype=i.dtype, device=i.device)
for i in self._data]
else:
self._grad = [ndarray.zeros(shape=i.shape, dtype=i.dtype, ctx=i.context,
stype=self._grad_stype) for i in self._data]
autograd.mark_variables(self._check_and_get(self._data, list),
self._grad, self.grad_req)
def _reduce(self):
"""Reduce data from multiple device to cpu."""
device = cpu()
if self._stype == 'default':
block = self.list_data()
if len(block) > 1:
if is_np_array():
data = sum([w.copyto(device) for w in block]) / len(block)
else:
data = ndarray.add_n(*(w.copyto(device) for w in block)) / len(block)
else:
data = self.data().copyto(device)
else:
# fetch all rows for 'row_sparse' param
all_row_ids = ndarray.arange(0, self.shape[0], dtype='int64', ctx=device)
data = ndarray.zeros(self.shape, stype='row_sparse', ctx=device)
trainer = self._trainer() if self._trainer else None
if not trainer:
raise RuntimeError(f"Cannot reduce row_sparse data for Parameter '{self.name}' when no " \
"Trainer is created with it.")
trainer._row_sparse_pull(self, data, all_row_ids, full_idx=True)
return data
@wrap_ctx_to_device_func
def initialize(self, init=None, device=None, default_init=initializer.Uniform(),
force_reinit=False):
"""Initializes parameter and gradient arrays. Only used for :py:class:`NDArray` API.
Parameters
----------
init : Initializer
The initializer to use. Overrides :py:meth:`Parameter.init` and default_init.
device : Device or list of Device, default :py:meth:`device.current_device()`.
Assign Parameter to given device. If device is a list of Device, a
copy will be made for each device.
.. note::
Copies are independent arrays. User is responsible for keeping
their values consistent when updating.
Normally :py:class:`gluon.Trainer` does this for you.
default_init : Initializer
Default initializer is used when both :py:func:`init`
and :py:meth:`Parameter.init` are ``None``.
force_reinit : bool, default False
Whether to force re-initialization if parameter is already initialized.
Examples
--------
>>> weight = mx.gluon.Parameter('weight', shape=(2, 2))
>>> weight.initialize(device=mx.cpu(0))
>>> weight.data()
[[-0.01068833 0.01729892]
[ 0.02042518 -0.01618656]]
<NDArray 2x2 @cpu(0)>
>>> weight.grad()
[[ 0. 0.]
[ 0. 0.]]
<NDArray 2x2 @cpu(0)>
>>> weight.initialize(device=[mx.gpu(0), mx.gpu(1)])
>>> weight.data(mx.gpu(0))
[[-0.00873779 -0.02834515]
[ 0.05484822 -0.06206018]]
<NDArray 2x2 @gpu(0)>
>>> weight.data(mx.gpu(1))
[[-0.00873779 -0.02834515]
[ 0.05484822 -0.06206018]]
<NDArray 2x2 @gpu(1)>
"""
if self._data is not None and not force_reinit:
warnings.warn(f"Parameter '{self.name}' is already initialized, ignoring. " \
"Set force_reinit=True to re-initialize.",
stacklevel=2)
return
self._data = self._grad = None
if device is None:
device = [_device.current_device()]
if isinstance(device, Device):
device = [device]
if isinstance(self.init, initializer.RNNFused):
self.init.set_initializer(init if init else default_init)
init = default_init = self.init
if init is None:
init = default_init if self.init is None else self.init
if not shape_is_known(self.shape):
if self._allow_deferred_init:
self._deferred_init = (init, device, default_init, None)
return
raise ValueError(f"Cannot initialize Parameter '{self.name}' because it has " \
f"invalid shape: {str(self.shape)}.")
self._deferred_init = (init, device, default_init, None)
self._finish_deferred_init()
def reset_device(self, device):
"""Re-assign Parameter to other devices.
Parameters
----------
device : Device or list of Device, default ``device.current_device()``.
Assign Parameter to given device. If device is a list of Device, a
copy will be made for each device.
"""
if device is None:
device = [_device.current_device()]
if isinstance(device, Device):
device = [device]
if self._data:
data = self._reduce()
with autograd.pause():
self._init_impl(data, device)
elif self._deferred_init:
init, _, default_init, data = self._deferred_init
self._deferred_init = (init, device, default_init, data)
else:
raise ValueError(f"Cannot reset device for Parameter '{self.name}' because it "
"has not been initialized.")
def reset_ctx(self, ctx):
"""This function has been deprecated. Please refer to ``Parameter.reset_device``."""
warnings.warn('Parameter.reset_ctx has been renamed to'
' Parameter.reset_device', DeprecationWarning)
self.reset_device(ctx)
def set_data(self, data):
"""Sets this parameter's value on all devices."""
self.shape = data.shape
if self._data is None:
assert self._deferred_init, \
f"Parameter '{self.name}' has not been initialized"
self._deferred_init = self._deferred_init[:3] + (data,)
return
# if update_on_kvstore, we need to make sure the copy stored in kvstore is in sync
trainer = self._trainer() if self._trainer else None
if trainer and trainer._kv_initialized and trainer._update_on_kvstore:
if self not in trainer._params_to_init:
trainer._reset_kvstore()
for arr in self._check_and_get(self._data, list):
arr[:] = data
def row_sparse_data(self, row_id):
"""Returns a copy of the 'row_sparse' parameter on the same device as row_id's.
The copy only retains rows whose ids occur in provided row ids.
The parameter must have been initialized on this device before.
Parameters
----------
row_id: NDArray
Row ids to retain for the 'row_sparse' parameter.
Returns
-------
NDArray on row_id's device
"""
if self._stype != 'row_sparse':
raise RuntimeError(f"Cannot return a copy of Parameter {self.name} via row_sparse_data() " \
f"because its storage type is {self._stype}. Please use data() instead.")
return self._get_row_sparse(self._data, row_id.device, row_id)
def list_row_sparse_data(self, row_id):
"""Returns copies of the 'row_sparse' parameter on all devices, in the same order
as creation. The copy only retains rows whose ids occur in provided row ids.
The parameter must have been initialized before.
Parameters
----------
row_id: NDArray
Row ids to retain for the 'row_sparse' parameter.
Returns
-------
list of NDArrays
"""
if self._stype != 'row_sparse':
raise RuntimeError(f"Cannot return copies of Parameter '{self.name}' on all devices via " \
f"list_row_sparse_data() because its storage type is {self._stype}. Please " \
"use data() instead.")
return self._get_row_sparse(self._data, list, row_id)
@wrap_ctx_to_device_func
def data(self, device=None):
"""Returns a copy of this parameter on one device. Must have been
initialized on this device before. For sparse parameters, use
:py:meth:`Parameter.row_sparse_data` instead.
Parameters
----------
device : Device
Desired device.
Returns
-------
NDArray on device
"""
if self._stype != 'default':
raise RuntimeError(f"Cannot return a copy of Parameter '{self.name}' on device {str(device)} via data() " \
f"because its storage type is {self._stype}. Please use row_sparse_data() instead.")
data = self._check_and_get(self._data, device)
dc.set_variable(data, self.var())
return data
def list_data(self):
"""Returns copies of this parameter on all devices, in the same order
as creation. For sparse parameters, use :py:meth:`Parameter.list_row_sparse_data`
instead.
Returns
-------
list of NDArrays
"""
if self._stype != 'default':
raise RuntimeError(f"Cannot return copies of Parameter '{self.name}' on all devices via " \
f"list_data() because its storage type is {self._stype}. Please use " \
"row_sparse_data() instead.")
return self._check_and_get(self._data, list)
def grad(self, device=None):
"""Returns a gradient buffer for this parameter on one device.
Parameters
----------
device : Device
Desired device.
"""
if self._data is not None and self._grad is None:
raise RuntimeError(
f"Cannot get gradient array for Parameter '{self.name}' " \
"because grad_req='null'")
return self._check_and_get(self._grad, device)
def list_grad(self):
"""Returns gradient buffers on all devices, in the same order
as :py:meth:`values`."""
if self._data is not None and self._grad is None:
raise RuntimeError(
f"Cannot get gradient array for Parameter '{self.name}' " \
"because grad_req='null'")
return self._check_and_get(self._grad, list)
def list_ctx(self):
"""This function has been deprecated. Please refer to ``Parameter.list_device``."""
warnings.warn('Parameter.list_ctx has been renamed to'
' Parameter.list_device', DeprecationWarning)
return self.list_device()
def list_device(self):
"""Returns a list of devices this parameter is initialized on."""
if self._data is None:
if self._deferred_init:
return self._deferred_init[1]
raise RuntimeError(f"Parameter '{self.name}' has not been initialized")
return self._device_list
def zero_grad(self):
"""Sets gradient buffer on all devices to 0. No action is taken if
parameter is uninitialized or doesn't require gradient."""
if self._grad is None:
return
for i in self._grad:
ndarray.zeros_like(i, out=i)
def var(self):
"""Returns a symbol representing this parameter."""
if self._var is None:
if self._var_name is None: # _var_name is set manually in SymbolBlock.import
# The variable name is required by the storage profiler.
self._var_name = self._uuid.replace('-', '_') + '_' + self._name
self._var = symbol.var(self._var_name, shape=self.shape, dtype=self.dtype,
lr_mult=self.lr_mult, wd_mult=self.wd_mult,
init=self.init, stype=self._stype)
if is_np_array():
self._var = self._var.as_np_ndarray()
return self._var
def cast(self, dtype):
"""Cast data and gradient of this Parameter to a new data type.
Parameters
----------
dtype : str or numpy.dtype
The new data type.
"""
self._dtype = dtype
self._var = None # Clear Symbol Variable as it caches the dtype
if self._data is None:
return
with autograd.pause():
self._data = [i.astype(dtype) for i in self._data]
if self._grad is None:
return
self._grad = [i.astype(dtype) for i in self._grad]
autograd.mark_variables(self._data, self._grad, self.grad_req)
def _check_and_setattr(self, **kwargs):
"""check and set attributes for parameter"""
for k, v in kwargs.items():
if hasattr(self, k) and getattr(self, k) is not None:
existing = getattr(self, k)
if k == 'shape' and len(v) == len(existing):
inferred_shape = []
matched = True
for dim1, dim2 in zip(v, existing):
if dim1 != dim2 and dim1 > 0 and dim2 > 0:
matched = False
break
elif dim1 == dim2:
inferred_shape.append(dim1)
elif dim1 in (0, -1): # -1 means unknown dim size in np_shape mode
inferred_shape.append(dim2)
else:
inferred_shape.append(dim1)
if matched:
self._shape = tuple(inferred_shape)
continue
elif k == 'dtype' and np.dtype(v) == np.dtype(existing):
continue
assert v is None or v == existing, \
f"Cannot retrieve Parameter '{self.name}' because desired attribute " \
f"does not match with stored for attribute '{k}': " \
f"desired '{str(v)}' vs stored '{str(getattr(self, k))}'."
else:
setattr(self, k, v)
class Constant(Parameter):
"""A constant parameter for holding immutable tensors.
`Constant`s are ignored by `autograd` and `Trainer`, thus their values
will not change during training. But you can still update their values
manually with the `set_data` method.
`Constant` s can be created with either::
const = mx.gluon.Constant([[1,2],[3,4]])
or::
class Block(gluon.Block):
def __init__(self, **kwargs):
super(Block, self).__init__(**kwargs)
self.const = mx.gluon.Constant([[1,2],[3,4]])
Parameters
----------
value : array-like
Initial value for the constant.
"""
def __init__(self, value):
if not isinstance(value, ndarray.NDArray):
array_fn = _mx_np.array if is_np_array() else ndarray.array
value = array_fn(value)
self.value = value
class Init(initializer.Initializer):
def _init_weight(self, _, arr):
value.copyto(arr)
init_name = 'Constant_{}'.format(id(self))
initializer.alias(init_name)(Init)
super(Constant, self).__init__(
name='const', grad_req='null', shape=value.shape, dtype=value.dtype,
init=init_name)
def __repr__(self):
s = 'Constant (shape={shape}, dtype={dtype})'
return s.format(shape=self.shape, dtype=self.dtype)
@property
def grad_req(self):
return 'null'
@grad_req.setter
def grad_req(self, req):
if req != 'null':
warnings.warn('Constant parameter "{}" does not support '
'grad_req other than "null", and new value "{}" '
'is ignored.'.format(self.name, req))