This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
/
Copy pathkvstore_dist.h
771 lines (717 loc) · 30.1 KB
/
kvstore_dist.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/**
* Copyright (c) 2015 by Contributors
* @file kvstore_dist.h
* @brief distributed implementation based on ps-lite
*/
#ifndef MXNET_KVSTORE_KVSTORE_DIST_H_
#define MXNET_KVSTORE_KVSTORE_DIST_H_
#include <string>
#include <vector>
#include <algorithm>
#include <utility>
#include "./kvstore_local.h"
#include "mxnet/engine.h"
#include "ps/ps.h"
#include "./kvstore_dist_server.h"
namespace mxnet {
namespace kvstore {
/**
* \brief distributed kvstore
*
* it's the server node's job to control the data consistency among all
* workers. see details on \ref ServerHandle::Start
*/
class KVStoreDist : public KVStoreLocal {
public:
explicit KVStoreDist(bool use_device_comm)
: KVStoreLocal(use_device_comm), ps_worker_(nullptr), server_(nullptr) {
if (IsWorkerNode()) {
int new_customer_id = GetNewCustomerId();
ps_worker_ = new ps::KVWorker<char>(0, new_customer_id);
ps::StartAsync(new_customer_id, "mxnet\0");
if (!ps::Postoffice::Get()->is_recovery()) {
ps::Postoffice::Get()->Barrier(
new_customer_id,
ps::kWorkerGroup + ps::kServerGroup + ps::kScheduler);
}
}
bigarray_bound_ = dmlc::GetEnv("MXNET_KVSTORE_BIGARRAY_BOUND", 1000 * 1000);
log_verbose_ = dmlc::GetEnv("MXNET_KVSTORE_DIST_ROW_SPARSE_VERBOSE", false);
}
virtual ~KVStoreDist() {
Engine::Get()->WaitForAll();
customer_id_ = 0;
if (IsWorkerNode()) {
if (barrier_before_exit_) {
Barrier();
if (get_rank() == 0 && ps_worker_->get_customer()->customer_id() == 0) {
// stop the executor at servers
SendCommandToServers(static_cast<int>(CommandType::kStopServer), "");
}
}
ps::Finalize(ps_worker_->get_customer()->customer_id(), barrier_before_exit_);
delete ps_worker_;
}
}
void set_updater(const Updater& updater) override {
CHECK(updater) << "invalid updater";
if (IsServerNode()) {
CHECK_NOTNULL(server_)->set_updater(updater);
} else {
updater_ = updater;
}
}
void SetGradientCompression(const std::vector<std::pair<std::string, std::string> >
& kwargs) override {
KVStoreLocal::SetGradientCompression(kwargs);
if (get_rank() == 0) {
SendCommandToServers(static_cast<int>(CommandType::kSetGradientCompression),
gradient_compression_->EncodeParams());
}
}
void SetServerProfilerCommand(const KVStoreServerProfilerCommand type,
const std::string& params) override {
if (get_rank() == 0) {
SendCommandToServers(static_cast<int>(CommandType::kSetProfilerParams),
params + std::to_string(static_cast<int>(type)));
}
}
void Barrier() override {
ps::Postoffice::Get()->Barrier(ps_worker_->get_customer()->customer_id(), ps::kWorkerGroup);
}
void SendCommandToServers(int cmd_id,
const std::string& cmd_body) override {
CHECK_NOTNULL(ps_worker_);
ps_worker_->Wait(ps_worker_->Request(cmd_id, cmd_body, ps::kServerGroup));
}
int get_group_size() const override { return ps::NumWorkers(); }
int get_rank() const override { return ps::MyRank(); }
int get_num_dead_node(int node_id, int timeout) const override {
int number = 0;
auto dead_nodes = ps::Postoffice::Get()->GetDeadNodes(timeout);
const auto& watch_nodes = ps::Postoffice::Get()->GetNodeIDs(node_id);
std::unordered_set<int> watch_set(watch_nodes.begin(), watch_nodes.end());
for (int r : dead_nodes) {
if (watch_set.find(r) != watch_set.end()) number++;
}
return number;
}
void RunServer(const Controller& controller) override {
CHECK(!IsWorkerNode());
if (IsServerNode()) {
server_ = new KVStoreDistServer();
server_->set_controller(controller);
}
ps::StartAsync(0, "mxnet_server\0");
if (!ps::Postoffice::Get()->is_recovery()) {
ps::Postoffice::Get()->Barrier(0,
ps::kWorkerGroup + ps::kServerGroup + ps::kScheduler);
}
if (server_) server_->Run();
ps::Finalize(0, true);
if (server_) {
delete server_;
}
server_ = nullptr;
}
private:
static std::atomic<int> customer_id_;
static int GetNewCustomerId() {
return customer_id_++;
}
/**
* \brief struct for ps keys and lens
*/
struct PSKV {
ps::SArray<ps::Key> keys; // n keys
ps::SArray<int> lens; // the length of the i-th value
int size;
};
struct ComprPSKV {
PSKV push;
PSKV pull;
};
/**
* \brief cache all key partitions
*
* `ps_kv_` is used for pushes and pulls without gradient compression
* `compr_ps_kv_` is used for gradient compression. It contains different
* pskv for push and pull because sizes would be different in both cases.
* Note: `ps_kv_[k]` for some key k may not be the same as `compr_ps_kv_[k].pull`
* This is because sharding may cause slightly different divisions when size is
* not perfectly divisible.
*/
std::unordered_map<int, PSKV> ps_kv_;
std::unordered_map<int, ComprPSKV> compr_ps_kv_;
/**
* \brief serialize access to ps_kv_ or push_ps_kv_/pull_ps_kv_ while encoding keys
*/
std::mutex mu_;
void InitImpl(const std::vector<int>& keys,
const std::vector<NDArray>& values) override {
CheckUnique(keys);
for (size_t i = 0; i < keys.size(); ++i) {
comm_->Init(keys[i], values[i].storage_type(), values[i].shape(), values[i].dtype());
}
if (get_rank() == 0 && this->ps_worker_->get_customer()->customer_id() == 0) {
Push_(keys, values, 0, false);
// wait until the push is finished
for (const int key : keys) {
comm_buf_[key].WaitToWrite();
compr_buf_[key].WaitToWrite();
}
} else {
// do nothing
}
if (!ps::Postoffice::Get()->is_recovery()) {
Barrier();
}
}
void PushImpl(const std::vector<int>& keys,
const std::vector<NDArray>& values,
int priority) override {
Push_(keys, values, priority, true);
}
void PullImpl(const std::vector<int>& keys,
const std::vector<NDArray*>& values,
int priority, bool ignore_sparse) override {
CHECK(ignore_sparse) << "dist kvstore pull doesn't support ignore_sparse=False";
std::vector<int> uniq_keys;
std::vector<std::vector<NDArray*> > grouped_vals;
GroupKVPairsPull(keys, values, &uniq_keys, &grouped_vals, true);
for (size_t i = 0; i < uniq_keys.size(); ++i) {
int key = uniq_keys[i];
// use the same array for merging to guarantee that pull always happens
// after the previous push on this key
auto& recv_buf = comm_buf_[key];
const auto storage_type = grouped_vals[i][0]->storage_type();
CHECK_EQ(storage_type, kDefaultStorage)
<< "Expected stype of value to be kDefaultStorage";
if (recv_buf.is_none()) {
// it may happen for the first time a no-rank-0 worker pull the weight.
recv_buf = NDArray(grouped_vals[i][0]->shape(), pinned_ctx_,
true, grouped_vals[i][0]->dtype());
}
auto pull_from_servers = [this, key, recv_buf](
RunContext rctx, Engine::CallbackOnComplete cb) {
// convert to ps keys
size_t size = recv_buf.shape().Size();
const int dtype = recv_buf.dtype();
const int num_bytes = mshadow::mshadow_sizeof(dtype);
PSKV& pskv = (gradient_compression_->get_type() == CompressionType::kNone) ?
EncodeDefaultKey(key, size, num_bytes) :
EncodeCompressedKey(key, size, false, num_bytes);
char* data = static_cast<char*> (recv_buf.data().dptr_);
// false means not to delete data when SArray is deleted
auto vals = new ps::SArray<char>(data, size * num_bytes, false);
// issue pull
RequestType mode = (gradient_compression_->get_type() != CompressionType::kNone) ?
RequestType::kCompressedPushPull : RequestType::kDefaultPushPull;
const int cmd = GetCommandType(mode, dtype);
CHECK_NOTNULL(ps_worker_)->ZPull(
pskv.keys, vals, &pskv.lens, cmd, [vals, cb](){ delete vals; cb(); });
};
CHECK_NOTNULL(Engine::Get())->PushAsync(
pull_from_servers,
pinned_ctx_,
{},
{recv_buf.var()},
FnProperty::kNormal,
priority,
"KVStoreDistDefaultStoragePull");
comm_->Broadcast(key, recv_buf, grouped_vals[i], priority);
}
}
void PullRowSparseImpl(const std::vector<int>& keys,
const std::vector<std::pair<NDArray*, NDArray>>& val_rowids,
int priority = 0) override {
std::vector<int> uniq_keys;
std::vector<std::vector<std::pair<NDArray*, NDArray>>> grouped_val_rowids;
GroupKVPairsPullRsp(keys, val_rowids, &uniq_keys, &grouped_val_rowids, false);
for (size_t i = 0; i < uniq_keys.size(); ++i) {
int key = uniq_keys[i];
// use the same array for merging to guarantee that pull always happens
// after the previous push on this key
auto& recv_buf = comm_buf_[key];
auto& grouped_val_rowid = grouped_val_rowids[i];
const auto storage_type = grouped_val_rowid[0].first->storage_type();
CHECK_EQ(storage_type, kRowSparseStorage)
<< "expected kRowSparseStorage, but got " << storage_type;
if (recv_buf.is_none()) {
// it may happen for the first time a no-rank-0 worker pull the weight.
recv_buf = NDArray(storage_type, grouped_val_rowid[0].first->shape(),
pinned_ctx_, true, grouped_val_rowid[0].first->dtype());
}
auto &target_val_rowids = grouped_val_rowids[i];
const size_t num_vals = target_val_rowids.size();
for (size_t i = 0; i < num_vals; i++) {
auto &row_id = target_val_rowids[i].second;
target_val_rowids[i].second = Unique(row_id, pinned_ctx_, 0);
}
CHECK_EQ(num_vals, 1) << "RowSparsePull with multiple values is not supported yet";
NDArray& indices = target_val_rowids[0].second;
PullRowSparse_(key, recv_buf, indices, priority);
// The recv_buf contains values pulled from remote server with unique indices.
// Directly broadcast w/o rowids if num_vals == 1
auto get_val = [](const std::pair<NDArray*, NDArray>& p) { return p.first; };
std::vector<NDArray*> grouped_val(grouped_val_rowid.size());
std::transform(grouped_val_rowid.begin(), grouped_val_rowid.end(),
grouped_val.begin(), get_val);
comm_->Broadcast(key, recv_buf, grouped_val, priority);
}
}
void Push_(const std::vector<int>& keys,
const std::vector<NDArray>& values,
int priority,
bool do_merge) {
// first aggregate the values over keys
std::vector<int> uniq_keys;
std::vector<std::vector<NDArray> > grouped_vals;
GroupKVPairsPush(keys, values, &uniq_keys, &grouped_vals, false);
for (size_t i = 0; i < uniq_keys.size(); ++i) {
// merge over devices
int key = uniq_keys[i];
const auto& vals = grouped_vals[i];
NDArray merged = do_merge ? comm_->Reduce(key, vals, priority) : vals[0];
const auto storage_type = merged.storage_type();
auto &comm_buf = comm_buf_[key];
if (merged.ctx().dev_mask() == cpu::kDevMask) {
// Start of a push doesn't guarantee that the previous pushes are completed.
// This shouldn't affect training of networks though because training involves
// a sequence of push, pull, then push. This imposes ordering that the
// second push happens after the first pull, and the pull happens after first push.
comm_buf = merged; // avoid memory copy
} else {
if (comm_buf.is_none()) {
if (storage_type == kDefaultStorage) {
comm_buf = NDArray(merged.shape(), pinned_ctx_, true, merged.dtype());
} else {
comm_buf = NDArray(storage_type, merged.shape(), pinned_ctx_, true, merged.dtype());
}
}
CopyFromTo(merged, &comm_buf);
}
const int dtype = merged.dtype();
const int num_bytes = mshadow::mshadow_sizeof(dtype);
// push to servers
if (storage_type == kDefaultStorage) {
if (gradient_compression_->get_type() == CompressionType::kNone) {
PSKV& pskv = EncodeDefaultKey(key, comm_buf.shape().Size(), num_bytes);
PushDefault(key, comm_buf, pskv, priority);
} else {
CHECK_EQ(dtype, mshadow::kFloat32) << "Gradient compression is only supported for "
<< "float32 type of parameters";
// Note: gradient compression uses `do_merge` as proxy to
// detect whether the push is initialization of a key or not.
// is_active is false when push is initialization of key
bool is_active = do_merge;
PSKV &pskv = EncodeCompressedKey(key, comm_buf.shape().Size(), is_active, num_bytes);
// Returns push_pskv if active, else pull_pskv
// we want inactive gc to send uncompressed gradients,
// but sharded in the same way as later pushes would when gc becomes active
if (is_active) {
PushCompressed(key, comm_buf, pskv, priority);
} else {
PushDefault(key, comm_buf, pskv, priority);
}
}
} else if (storage_type == kRowSparseStorage) {
CHECK(gradient_compression_->get_type() == CompressionType::kNone)
<< "Gradient compression for row sparse storage type is not supported";
PushRowSparse(key, comm_buf, priority);
} else {
LOG(FATAL) << "unknown storage type";
}
}
}
void PushCompressed(int key, const NDArray& comm_buf, const PSKV& pskv, int priority) {
auto &small_buf = compr_buf_[key];
auto &res_buf = residual_[key];
const size_t original_size = comm_buf.shape().Size();
const int dtype = comm_buf.dtype();
// Init the small buffer and residual_ buffer for quantize
if (small_buf.is_none()) {
small_buf = NDArray(TShape{pskv.size}, comm_buf.ctx(), false, dtype);
res_buf = NDArray(TShape{static_cast<int64_t>(original_size)}, comm_buf.ctx(), false, dtype);
res_buf = 0;
}
gradient_compression_->Quantize(comm_buf, &small_buf, &res_buf, priority);
auto push_to_servers =
[this, key, dtype, pskv, small_buf](RunContext rctx, Engine::CallbackOnComplete cb) {
size_t size = small_buf.shape().Size() * mshadow::mshadow_sizeof(dtype);
char* data = static_cast<char *> (small_buf.data().dptr_);
// do push. false means no delete
ps::SArray<char> vals(data, size, false);
int cmd = GetCommandType(RequestType::kCompressedPushPull, dtype);
CHECK_NOTNULL(ps_worker_)->ZPush(pskv.keys, vals, pskv.lens, cmd, [cb]() { cb(); });
};
// acquire locks on both comm_buf and small_buf so that
// pull (which uses comm_buf) for the same key waits till push finishes
Engine::Get()->PushAsync(
push_to_servers,
pinned_ctx_,
{small_buf.var(), comm_buf.var()},
{},
FnProperty::kNormal,
priority,
"KVStoreDistCompressedPush");
}
void PushDefault(int key, const NDArray &send_buf, const PSKV& pskv, int priority) {
auto push_to_servers =
[this, key, pskv, send_buf](RunContext rctx, Engine::CallbackOnComplete cb) {
const int dtype = send_buf.dtype();
// convert to ps keys
const size_t size = send_buf.shape().Size() * mshadow::mshadow_sizeof(dtype);
char* data = static_cast<char *>(send_buf.data().dptr_);
// do push. false means no delete
ps::SArray<char> vals(data, size, false);
int cmd = GetCommandType(RequestType::kDefaultPushPull, dtype);
CHECK_NOTNULL(ps_worker_)->ZPush(
pskv.keys, vals, pskv.lens,
cmd, [cb]() { cb(); });
};
Engine::Get()->PushAsync(
push_to_servers,
pinned_ctx_,
{send_buf.var()},
{},
FnProperty::kNormal,
priority,
"KVStoreDistDefaultPush");
}
// push row sparse gradient
void PushRowSparse(int key, const NDArray &send_buf, int priority) {
using namespace rowsparse;
auto push_to_servers = [this, key, send_buf]
(RunContext rctx, Engine::CallbackOnComplete cb) {
char* data = static_cast<char *>(send_buf.data().dptr_);
const int64_t num_rows = send_buf.aux_shape(kIdx)[0];
const auto offsets = send_buf.aux_data(kIdx).dptr<int64_t>();
const auto unit_len = send_buf.shape().ProdShape(1, send_buf.shape().ndim());
const int num_bytes = mshadow::mshadow_sizeof(send_buf.dtype());
const int64_t size = num_rows * unit_len;
// convert to ps keys in row sparse format
PSKV& pskv = EncodeRowSparseKey(key, size, num_rows, offsets,
unit_len, send_buf.shape()[0], num_bytes);
if (this->log_verbose_) {
LOG(INFO) << "worker " << get_rank() << " push lens: " << pskv.lens << " keys: "
<< pskv.keys << " size: " << size;
}
ps::SArray<char> vals(data, size * num_bytes, false);
const int cmd = GetCommandType(RequestType::kRowSparsePushPull, send_buf.dtype());
CHECK_NOTNULL(ps_worker_)->ZPush(pskv.keys, vals, pskv.lens, cmd, [cb]() { cb(); });
};
Engine::Get()->PushAsync(
push_to_servers,
pinned_ctx_,
{send_buf.var()},
{},
FnProperty::kNormal,
priority,
"KVStoreDistRowSparsePush");
}
// pull row sparse weight into `recv_buf` based on indices given by `indices`
void PullRowSparse_(const int key, const NDArray& recv_buf,
const NDArray& indices, int priority) {
using namespace rowsparse;
auto pull_from_servers = [this, key, recv_buf, indices]
(RunContext rctx, Engine::CallbackOnComplete cb) {
// allocate memory for the buffer
CHECK_EQ(indices.dtype(), mshadow::kInt64);
const TBlob idx_data = indices.data();
const size_t num_rows = idx_data.shape_.Size();
recv_buf.CheckAndAlloc({mshadow::Shape1(num_rows)});
const int dtype = recv_buf.dtype();
char* data = static_cast<char *>(recv_buf.data().dptr_);
const auto offsets = idx_data.dptr<int64_t>();
const auto unit_len = recv_buf.shape().ProdShape(1, recv_buf.shape().ndim());
const int64_t size = num_rows * unit_len;
const int num_bytes = mshadow::mshadow_sizeof(dtype);
// convert to ps keys in row sparse format
PSKV& pskv = EncodeRowSparseKey(key, size, num_rows, offsets,
unit_len, recv_buf.shape()[0],
num_bytes);
if (this->log_verbose_) {
LOG(INFO) << "worker " << get_rank() << " pull lens: " << pskv.lens << " keys: "
<< pskv.keys << " size: " << size;
}
auto vals = new ps::SArray<char>(data, size * num_bytes, false);
const int cmd = GetCommandType(RequestType::kRowSparsePushPull, recv_buf.dtype());
// copy indices to recv_buf. this needs to be done before ZPull
// because after pull is done, the callback function returns and locks are released.
// at this point, later functions may access the indices variable while copy happens
mshadow::Copy(recv_buf.aux_data(kIdx).FlatTo1D<cpu, int64_t>(),
idx_data.FlatTo1D<cpu, int64_t>());
CHECK_NOTNULL(ps_worker_)->ZPull(pskv.keys, vals, &pskv.lens,
cmd,
[vals, cb]() { delete vals; cb(); });
};
CHECK_NOTNULL(Engine::Get())->PushAsync(
pull_from_servers,
pinned_ctx_,
{indices.var()},
{recv_buf.var()},
FnProperty::kNormal,
priority,
"KVStoreDistRowSparsePull");
}
/**
* \brief check if the keys are all unique
*/
void CheckUnique(const std::vector<int>& keys) {
auto keys_copy = keys;
auto last = std::unique(keys_copy.begin(), keys_copy.end());
CHECK_EQ(static_cast<size_t>(std::distance(keys_copy.begin(), last)),
static_cast<size_t>(keys.size()));
}
/**
* \brief convert to pskv for parameter server
* \param key
* \param num_arr_elems number of elements in the value for key
* \param num_bytes size of each element in number of bytes
* \return PSKV used for both push and pull
*/
inline PSKV& EncodeDefaultKey(const int key, const size_t num_arr_elems,
const int num_bytes) {
mu_.lock();
PSKV& pskv = ps_kv_[key];
mu_.unlock();
size_t pskv_size = num_arr_elems * num_bytes;
if (!pskv.keys.empty()) {
CHECK_EQ(static_cast<size_t>(pskv.size), pskv_size)
<< "The value size cannot be changed " << pskv_size << ". Key is " << key;
} else {
auto krs = ps::Postoffice::Get()->GetServerKeyRanges();
const int num_servers = krs.size();
CHECK_GT(num_servers, 0);
// a simple heuristic for load balance
if (num_arr_elems < bigarray_bound_) {
// send it to a single random picked server
int server = (key * 9973) % num_servers;
ps::Key ps_key = krs[server].begin() + key;
CHECK_LT(ps_key, krs[server].end());
pskv.keys.push_back(ps_key);
const int total_bytes = num_arr_elems * num_bytes;
pskv.lens.push_back(total_bytes);
pskv.size = total_bytes;
} else {
// parition it to all servers
pskv.size = 0;
for (int i = 0; i < num_servers; ++i) {
size_t part_size =
static_cast<size_t>(round(static_cast<double>(num_arr_elems)/num_servers*(i+1))) -
static_cast<size_t>(round(static_cast<double>(num_arr_elems)/num_servers*i));
ps::Key ps_key = krs[i].begin() + key;
CHECK_LT(ps_key, krs[i].end());
pskv.keys.push_back(ps_key);
const int total_bytes = part_size * num_bytes;
pskv.lens.push_back(total_bytes);
pskv.size += total_bytes;
}
}
CHECK_EQ(static_cast<size_t>(pskv.size), pskv_size);
}
return pskv;
}
/**
* \brief Convert to PSKV for pushes and pulls when gradient compression is used.
* Divides original array into equal parts for each server.
* Populates both push and pull pskv on first call.
* \param key
* \param num_arr_elems number of elements in the value for key
* \param is_push whether this is push or pull
* \param num_bytes size of each element in number of bytes
* \return PSKV used for both push and pull
*/
inline PSKV& EncodeCompressedKey(const int key, const size_t original_num_elem,
const bool is_push, const int num_bytes) {
auto krs = ps::Postoffice::Get()->GetServerKeyRanges();
const int num_servers = krs.size();
CHECK_GT(num_servers, 0);
// represents size of data to be sent
size_t compr_num_elem = gradient_compression_->GetCompressedSize(original_num_elem);
mu_.lock();
PSKV& pskv = (is_push) ? compr_ps_kv_[key].push : compr_ps_kv_[key].pull;
mu_.unlock();
if (!pskv.keys.empty()) {
const size_t num_elem = (is_push) ? compr_num_elem : original_num_elem;
CHECK_EQ(static_cast<size_t >(pskv.size), num_elem * num_bytes)
<< "The value size can't be changed. For key " << key;
} else {
// populate both pull and push pskvs
// push pskv has sizes corresponding to compressed data
// pull pskv has decompressed sizes for parts in push_pskv
mu_.lock();
PSKV& pull_pskv = compr_ps_kv_[key].pull;
PSKV& push_pskv = compr_ps_kv_[key].push;
mu_.unlock();
if (original_num_elem < bigarray_bound_) {
// a simple heuristic for load balancing
// send it to a single random picked server
const int server = (key * 9973) % num_servers;
ps::Key ps_key = krs[server].begin() + key;
CHECK_LT(ps_key, krs[server].end());
// meta info
push_pskv.keys.push_back(krs[server].begin() + original_num_elem);
push_pskv.lens.push_back(0);
// data
push_pskv.keys.push_back(ps_key);
pull_pskv.keys.push_back(ps_key);
const int compr_size = compr_num_elem * num_bytes;
const int original_size = original_num_elem * num_bytes;
push_pskv.lens.push_back(compr_size);
pull_pskv.lens.push_back(original_size);
push_pskv.size = compr_size;
pull_pskv.size = original_size;
} else {
// partition it to all servers
push_pskv.size = 0;
pull_pskv.size = 0;
for (int i = 0; i < num_servers; ++i) {
size_t part_compr, part_orig;
if (i == num_servers-1) {
part_compr = compr_num_elem - push_pskv.size;
part_orig = original_num_elem - pull_pskv.size;
} else {
part_compr =
static_cast<size_t> (round(static_cast<double>(compr_num_elem)/num_servers*(i+1))) -
static_cast<size_t> (round(static_cast<double>(compr_num_elem)/num_servers*(i)));
part_orig = part_compr * gradient_compression_->GetCompressionFactor();
}
// meta info
ps::Key ps_key_dummy = krs[i].begin() + part_orig;
CHECK_LT(ps_key_dummy, krs[i].end());
push_pskv.keys.push_back(ps_key_dummy);
push_pskv.lens.push_back(0);
// data
ps::Key ps_key = krs[i].begin() + key;
CHECK_LT(ps_key, krs[i].end());
push_pskv.keys.push_back(ps_key);
pull_pskv.keys.push_back(ps_key);
push_pskv.lens.push_back(part_compr * num_bytes);
pull_pskv.lens.push_back(part_orig * num_bytes);
// num elements need to be inserted below so that for last server,
// there is no round off error
push_pskv.size += part_compr;
pull_pskv.size += part_orig;
}
CHECK_EQ(static_cast<size_t>(push_pskv.size), compr_num_elem);
CHECK_EQ(static_cast<size_t>(pull_pskv.size), original_num_elem);
push_pskv.size *= num_bytes;
pull_pskv.size *= num_bytes;
CHECK_EQ(push_pskv.lens.size(), num_servers * 2);
}
}
return pskv;
}
// Note: this encoding method for row sparse keys doesn't allow cross-layer batching
inline PSKV& EncodeRowSparseKey(const int key, const int64_t num_elem, const int64_t num_rows,
const int64_t *offsets, const size_t unit_len,
const int64_t total_num_rows, const int num_bytes) {
using namespace common;
mu_.lock();
PSKV& pskv = ps_kv_[key];
mu_.unlock();
pskv.keys.clear();
pskv.lens.clear();
// TODO(haibin) cache this information
auto krs = ps::Postoffice::Get()->GetServerKeyRanges();
const int num_servers = krs.size();
CHECK_GT(num_servers, 0);
if (total_num_rows * unit_len >= bigarray_bound_) {
pskv.size = 0;
int64_t start_row = 0;
// parition it to all servers
for (int i = 0; i < num_servers; ++i) {
ps::Key master_key = krs[i].begin() + key;
pskv.keys.push_back(master_key);
pskv.lens.push_back(0);
if (offsets && num_elem > 0) {
// calculate partition ranges
int64_t part_num_rows =
llround(static_cast<double>(total_num_rows) / num_servers * (i + 1)) -
llround(static_cast<double>(total_num_rows) / num_servers * i);
auto end_row = start_row + part_num_rows;
// search for offsets in [start_row, end_row)
auto lb = std::lower_bound(offsets, offsets + num_rows, start_row);
auto ub = std::upper_bound(offsets, offsets + num_rows, end_row - 1);
for (auto offset = lb; offset < ub; offset++) {
ps::Key ps_key = krs[i].begin() + key + (*offset - start_row);
CHECK_LT(ps_key, krs[i].end());
pskv.keys.push_back(ps_key);
const int part_size = unit_len * num_bytes;
pskv.lens.push_back(part_size);
pskv.size += (part_size);
}
start_row = end_row;
}
}
CHECK_EQ(static_cast<size_t>(pskv.size), num_elem * num_bytes);
} else {
// send it to a single random picked server
const int server = (key * 9973) % num_servers;
ps::Key master_key = krs[server].begin() + key;
pskv.keys.push_back(master_key);
pskv.lens.push_back(0);
for (int64_t i = 0; i < num_rows; i++) {
ps::Key ps_key = krs[server].begin() + key + offsets[i];
CHECK_LT(ps_key, krs[server].end());
pskv.keys.push_back(ps_key);
pskv.lens.push_back(unit_len * num_bytes);
}
pskv.size = num_elem * num_bytes;
}
return pskv;
}
/**
* \brief for worker to push and pull data
*/
ps::KVWorker<char>* ps_worker_;
/**
* \brief the server handle
*/
KVStoreDistServer* server_;
/**
* \brief threshold for partition
*/
size_t bigarray_bound_;
/**
* \brief buffer for non-compressed data.
* When gradient compression is active, this is used
* for the data in pull and for original data in push
*/
std::unordered_map<int, NDArray> comm_buf_;
/**
* \brief buffer for compressed data
* Used when gradient compression is active and action
* is push
*/
std::unordered_map<int, NDArray> compr_buf_;
/**
* \brief residual buffer to accumulate quantization error
* during gradient compression
*/
std::unordered_map<int, NDArray> residual_;
bool log_verbose_;
};
} // namespace kvstore
} // namespace mxnet
#endif // MXNET_KVSTORE_KVSTORE_DIST_H_