This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
/
Copy pathsampler.h
360 lines (333 loc) · 15 KB
/
sampler.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file sampler.h
* \brief implementations of random sampling functors.
*/
#ifndef MXNET_OPERATOR_RANDOM_SAMPLER_H_
#define MXNET_OPERATOR_RANDOM_SAMPLER_H_
#include <algorithm>
using namespace mshadow;
using namespace mxnet::op::mxnet_op;
using namespace mxnet::common::random;
namespace mxnet {
namespace op {
/*!
* \brief Launch a generic kernel with parallel random generator.
* \tparam gen random generator
* \tparam N Number of iterations
* \tparam Args Varargs type to eventually pass to the OP::Map() function
*/
template<typename OP, typename xpu, typename GType, typename ...Args>
inline static void LaunchRNG(mshadow::Stream<xpu> *s,
common::random::RandGenerator<xpu, GType> *gen,
const index_t N, Args... args) {
// minimal check to avoid division by zero, below.
// if `N` is zero the map operation is a no-op in any case.
if (N <= 0) {
return;
}
const index_t nloop = (N + RandGenerator<xpu>::kMinNumRandomPerThread - 1) /
RandGenerator<xpu>::kMinNumRandomPerThread;
const index_t nthread = std::min(nloop,
static_cast<index_t>(RandGenerator<xpu>::kNumRandomStates));
const index_t step = (N + nthread - 1) / nthread;
Kernel<OP, xpu>::Launch(s, nthread, *gen, N, step, args...);
}
#define RNG_KERNEL_LOOP(xpu, GType, thread_id, gen, N, step, ...) \
const index_t start = thread_id * step; \
const index_t end = start + step; \
typename RandGenerator<xpu, GType>::Impl genImpl(&gen, thread_id); \
for (index_t i = start; i < end && i < N; ++i) { \
{__VA_ARGS__} \
}
template<typename xpu>
struct SampleUniformKernel {
template<typename IType, typename OType>
MSHADOW_XINLINE static void Map(index_t id, RandGenerator<xpu, OType> gen,
const index_t N, const index_t step,
index_t nParm, index_t nSample,
const IType *lower, const IType *upper, OType *out) {
RNG_KERNEL_LOOP(xpu, OType, id, gen, N, step, {
index_t nBatch(1 + (nSample - 1) / nParm);
out[i] = OType(lower[i / nBatch] +
(upper[i / nBatch] - lower[i / nBatch]) * genImpl.uniform());
});
}
};
template<typename xpu>
struct UniformSampler {
template<typename IType, typename OType>
MSHADOW_FORCE_INLINE void Sample(const Tensor<xpu, 1, IType>& lower,
const Tensor<xpu, 1, IType>& upper,
const Tensor<xpu, 1, OType>& out,
RandGenerator<xpu, OType> *pgen,
Stream<xpu> *s) {
LaunchRNG<SampleUniformKernel<xpu>, xpu>(s, pgen, out.size(0), lower.size(0), out.size(0),
lower.dptr_, upper.dptr_, out.dptr_);
}
};
template<typename xpu>
struct SampleRandIntKernel {
template<typename IType, typename OType>
MSHADOW_XINLINE static void Map(int id, RandGenerator<xpu, OType> gen,
const int N, const int step,
index_t nParm, index_t nSample,
const IType *lower, const IType *upper, OType *out) {
RNG_KERNEL_LOOP(xpu, OType, id, gen, N, step, {
index_t nBatch(1 + (nSample - 1) / nParm);
if (sizeof(IType) == sizeof(int64_t))
out[i] = OType(lower[i / nBatch] +
genImpl.rand_int64() % (upper[i / nBatch] - lower[i / nBatch]));
else
out[i] = OType(lower[i / nBatch] +
genImpl.rand() % (upper[i / nBatch] - lower[i / nBatch]));
});
}
};
template<typename xpu>
struct RandIntSampler {
template<typename IType, typename OType>
MSHADOW_FORCE_INLINE void Sample(const Tensor<xpu, 1, IType>& lower,
const Tensor<xpu, 1, IType>& upper,
const Tensor<xpu, 1, OType>& out,
RandGenerator<xpu, OType> *pgen,
Stream<xpu> *s) {
LaunchRNG<SampleRandIntKernel<xpu>, xpu>(s, pgen, out.size(0), lower.size(0), out.size(0),
lower.dptr_, upper.dptr_, out.dptr_);
}
};
template<typename xpu>
struct SampleNormalKernel {
template<typename IType, typename OType>
MSHADOW_XINLINE static void Map(index_t id, RandGenerator<xpu, OType> gen,
const index_t N, const index_t step,
index_t nParm, index_t nSample,
const IType *mean, const IType *std, OType *out) {
RNG_KERNEL_LOOP(xpu, OType, id, gen, N, step, {
index_t nBatch(1 + (nSample - 1) / nParm);
out[i] = OType(genImpl.normal() * std[i / nBatch] + mean[i / nBatch]);
});
}
};
template<typename xpu>
struct NormalSampler {
template<typename IType, typename OType>
MSHADOW_FORCE_INLINE void Sample(const Tensor<xpu, 1, IType>& mean,
const Tensor<xpu, 1, IType>& std,
const Tensor<xpu, 1, OType>& out,
RandGenerator<xpu, OType> *pgen,
Stream<xpu> *s) {
LaunchRNG<SampleNormalKernel<xpu>, xpu>(s, pgen, out.size(0), mean.size(0), out.size(0),
mean.dptr_, std.dptr_, out.dptr_);
}
};
template<typename xpu>
struct SampleExponentialKernel {
template<typename IType, typename OType>
MSHADOW_XINLINE static void Map(index_t id, RandGenerator<xpu, OType> gen,
const index_t N, const index_t step,
index_t nParm, index_t nSample,
const IType *lambda, OType *out) {
RNG_KERNEL_LOOP(xpu, OType, id, gen, N, step, {
index_t nBatch(1 + (nSample - 1) / nParm);
out[i] = OType(-log(1.0 - genImpl.uniform()) / lambda[i / nBatch]);
});
}
};
template<typename xpu>
struct ExponentialSampler {
template<typename IType, typename OType>
MSHADOW_FORCE_INLINE void Sample(const Tensor<xpu, 1, IType>& lambda,
const Tensor<xpu, 1, OType>& out,
RandGenerator<xpu, OType> *pgen,
Stream<xpu> *s) {
LaunchRNG<SampleExponentialKernel<xpu>, xpu>(s, pgen, out.size(0),
lambda.size(0), out.size(0),
lambda.dptr_, out.dptr_);
}
};
template<typename xpu, typename IType, typename OType>
MSHADOW_XINLINE OType SampleGamma(IType a, IType b, typename RandGenerator<xpu, OType>::Impl *gen) {
// Generate one sample of the gamma distribution
OType sample;
OType d = a < 1 ? a + 2.0 / 3.0 : a - 1.0 / 3.0;
OType k = sqrt(9.0 * d);
OType c = 1.0 / k;
while (1) {
OType Z = gen->normal();
if (Z > -k) {
OType x = 1.0 + c * Z;
OType V = x * x * x;
if (log(1.0-gen->uniform()) < 0.5 * Z * Z + d * (1.0 - V + log(V))) {
sample = d * V * b;
break;
}
}
}
return a < 1 ? sample * pow(gen->uniform(), OType(1.0 / a)) : sample;
}
template<typename xpu>
struct SampleGammaKernel {
template<typename IType, typename OType, typename FType>
MSHADOW_XINLINE static void Map(index_t id, RandGenerator<xpu, FType> gen,
const index_t N, const index_t step,
index_t nParm, index_t nSample,
const IType *alpha, const IType *beta, OType *out) {
RNG_KERNEL_LOOP(xpu, FType, id, gen, N, step, {
index_t nBatch(1 + (nSample - 1) / nParm);
out[i] = OType(SampleGamma<xpu, IType, FType>(alpha[i / nBatch],
beta[i / nBatch], &genImpl));
});
}
};
template<typename xpu>
struct GammaSampler {
template<typename IType, typename OType>
MSHADOW_FORCE_INLINE void Sample(const Tensor<xpu, 1, IType>& alpha,
const Tensor<xpu, 1, IType>& beta,
const Tensor<xpu, 1, OType>& out,
RandGenerator<xpu, OType> *pgen,
Stream<xpu> *s) {
typedef typename std::conditional<std::is_floating_point<OType>::value,
OType, float>::type FType;
RandGenerator<xpu, FType> *gen = reinterpret_cast<RandGenerator<xpu, FType> *>(pgen);
LaunchRNG<SampleGammaKernel<xpu>, xpu>(s, gen, out.size(0), alpha.size(0), out.size(0),
alpha.dptr_, beta.dptr_, out.dptr_);
}
};
template<typename xpu>
MSHADOW_XINLINE int SamplePoisson(float lambda, typename RandGenerator<xpu, float>::Impl *gen) {
// Generate one sample of the poisson distribution. Intentionally written
// towards a specific type (float) for internal computation which is sufficient
// for accurate enough computation.
if ( lambda < 12.0 ) {
float t = expf(-lambda);
int x = 0;
for ( float prod = gen->uniform(); prod > t; prod *= gen->uniform() ) { x += 1; }
return x;
} else {
// Approximation for high lambda according to:
// Numerical Recipes in C: The Art of Scientific Computing
// Cambridge University Press
const float pi(3.1415926);
const float sq(sqrt(2.0*lambda));
const float loglambda(log(lambda));
const float g(lambda*loglambda-lgammaf(lambda+1.0));
float em(0), t(0), y(0);
do {
do {
y = tanf(pi * gen->uniform());
em = sq * y + lambda;
} while (em < 0.0);
em = floorf(em);
t = 0.9 * (1.0 + y * y) * expf(em * loglambda - lgammaf(em + 1.0) - g);
} while (gen->uniform() > t);
return static_cast<int>(em);
}
}
template<typename xpu>
struct SamplePoissonKernel {
template<typename IType, typename OType>
MSHADOW_XINLINE static void Map(index_t id, RandGenerator<xpu, float> gen,
const index_t N, const index_t step,
index_t nParm, index_t nSample,
const IType *lambda, OType *out) {
RNG_KERNEL_LOOP(xpu, float, id, gen, N, step, {
index_t nBatch(1 + (nSample - 1) / nParm);
out[i] = OType(SamplePoisson<xpu>(lambda[i / nBatch], &genImpl));
});
}
};
template<typename xpu>
struct PoissonSampler {
template<typename IType, typename OType>
MSHADOW_FORCE_INLINE void Sample(const Tensor<xpu, 1, IType>& lambda,
const Tensor<xpu, 1, OType>& out,
RandGenerator<xpu, OType> *pgen,
Stream<xpu> *s) {
RandGenerator<xpu, float> *gen = reinterpret_cast<RandGenerator<xpu, float> *>(pgen);
LaunchRNG<SamplePoissonKernel<xpu>, xpu>(s, gen, out.size(0), lambda.size(0), out.size(0),
lambda.dptr_, out.dptr_);
}
};
template<typename xpu>
struct SampleNegativeBinomialKernel {
template<typename IType, typename OType>
MSHADOW_XINLINE static void Map(index_t id, RandGenerator<xpu, float> gen,
const index_t N, const index_t step,
index_t nParm, index_t nSample,
const IType *k, const IType *p, OType *out) {
RNG_KERNEL_LOOP(xpu, float, id, gen, N, step, {
index_t nBatch(1 + (nSample - 1) / nParm);
float alpha = k[i / nBatch];
float prob = p[i / nBatch];
float beta = (1.0 - prob) / prob;
float lambda = SampleGamma<xpu, IType, float>(alpha, beta, &genImpl);
out[i] = OType(SamplePoisson<xpu>(lambda, &genImpl));
});
}
};
template<typename xpu>
struct NegativeBinomialSampler {
template<typename IType, typename OType>
MSHADOW_FORCE_INLINE void Sample(const Tensor<xpu, 1, IType>& k,
const Tensor<xpu, 1, IType>& p,
const Tensor<xpu, 1, OType>& out,
RandGenerator<xpu, OType> *pgen,
Stream<xpu> *s) {
RandGenerator<xpu, float> *gen = reinterpret_cast<RandGenerator<xpu, float> *>(pgen);
LaunchRNG<SampleNegativeBinomialKernel<xpu>, xpu>(s, gen, out.size(0), k.size(0), out.size(0),
k.dptr_, p.dptr_, out.dptr_);
}
};
template<typename xpu>
struct SampleGeneralizedNegativeBinomialKernel {
template<typename IType, typename OType>
MSHADOW_XINLINE static void Map(index_t id, RandGenerator<xpu, float> gen,
const index_t N, const index_t step,
index_t nParm, index_t nSample,
const IType *mu, const IType *alpha, OType *out) {
RNG_KERNEL_LOOP(xpu, float, id, gen, N, step, {
index_t nBatch(1 + (nSample - 1) / nParm);
float lambda = alpha[i / nBatch] == 0 ?
static_cast<float>(mu[i / nBatch]) :
SampleGamma<xpu, IType, float>(IType(1) / alpha[i / nBatch],
alpha[i / nBatch] * mu[i / nBatch], &genImpl);
out[i] = OType(SamplePoisson<xpu>(lambda, &genImpl));
});
}
};
template<typename xpu>
struct GeneralizedNegativeBinomialSampler {
template<typename IType, typename OType>
MSHADOW_FORCE_INLINE void Sample(const Tensor<xpu, 1, IType>& mu,
const Tensor<xpu, 1, IType>& alpha,
const Tensor<xpu, 1, OType>& out,
RandGenerator<xpu, OType> *pgen,
Stream<xpu> *s) {
RandGenerator<xpu, float> *gen = reinterpret_cast<RandGenerator<xpu, float> *>(pgen);
LaunchRNG<SampleGeneralizedNegativeBinomialKernel<xpu>, xpu>(s, gen, out.size(0),
mu.size(0), out.size(0),
mu.dptr_, alpha.dptr_, out.dptr_);
}
};
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_RANDOM_SAMPLER_H_