generated from allenai/python-package-template
-
Notifications
You must be signed in to change notification settings - Fork 190
/
Copy pathtrain.py
228 lines (184 loc) · 8.87 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import logging
import os
from logging import Logger
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Optional
import torch
import torch.distributed
import wandb
from datasets.utils import disable_progress_bars
from datasets.utils.logging import set_verbosity
from peft import LoraConfig, get_peft_model # pyright: ignore
from transformers import (
AutoProcessor,
Qwen2VLForConditionalGeneration,
Trainer,
TrainerCallback,
TrainingArguments,
)
from transformers.integrations import WandbCallback
from transformers.trainer_callback import TrainerControl, TrainerState
from transformers.trainer_utils import get_last_checkpoint
from olmocr.train.core.cli import make_cli, save_config, to_native_types
from olmocr.train.core.config import TrainConfig
from olmocr.train.core.loggers import get_logger
from olmocr.train.core.paths import copy_dir, join_path
from olmocr.train.core.state import BeakerState
from .utils import (
RunName,
TruncatingCollator,
get_local_dir,
log_trainable_parameters,
make_dataset,
setup_environment,
)
class CheckpointUploadCallback(TrainerCallback):
def __init__(self, save_path: str, logger: Optional[Logger] = None):
self.save_path = save_path
self.logger = logger or get_logger(self.__class__.__name__)
def on_save(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
if state.is_local_process_zero:
latest_checkpoint = get_last_checkpoint(args.output_dir)
if not latest_checkpoint:
return
dir_name = Path(latest_checkpoint).name
copy_dir(str(latest_checkpoint), f"{self.save_path}/{dir_name}")
self.logger.info("Saved checkpoint to %s", f"{self.save_path}/{dir_name}")
def update_wandb_config(config: TrainConfig, trainer: Trainer, model: torch.nn.Module):
# finding wandb callback
callbacks = [c for c in trainer.callback_handler.callbacks if isinstance(c, WandbCallback)] # pyright: ignore
if not callbacks:
raise ValueError("WandbCallback not found in trainer callbacks")
wandb_callback = callbacks[0]
peft_config = to_native_types(getattr(model, "peft_config", {}))
script_config = to_native_types(config)
beaker_envs = {k: v for k, v in os.environ.items() if k.lower().startswith("beaker")}
on_setup_fn = wandb_callback.setup
def setup_and_update(args, state, model, **kwargs):
on_setup_fn(args=args, state=state, model=model, **kwargs)
wandb.config.update({"peft": peft_config}, allow_val_change=True)
wandb.config.update({"script": script_config}, allow_val_change=True)
wandb.config.update({"beaker": beaker_envs}, allow_val_change=True)
if (run := wandb.run) and (beaker_url := BeakerState().url):
run.notes = beaker_url
wandb_callback.setup = setup_and_update
def get_rank() -> int:
if torch.distributed.is_available() and torch.distributed.is_initialized():
return torch.distributed.get_rank()
return 0
def run_train(config: TrainConfig):
if get_rank() == 0:
logger_level = logging.INFO
else:
logger_level = logging.WARN
disable_progress_bars()
logger = get_logger(__name__, level=logger_level)
set_verbosity(logger_level)
run_name = RunName.get(config)
setup_environment(aws_config=config.aws, wandb_config=config.wandb, WANDB_RUN_GROUP=run_name.group)
processor = AutoProcessor.from_pretrained(config.model.name_or_path, trust_remote_code=True)
train_dataset, valid_dataset = make_dataset(config, processor)
logger.info(train_dataset)
logger.info(valid_dataset)
if "qwen" in config.model.name_or_path.lower():
model = Qwen2VLForConditionalGeneration.from_pretrained(
config.model.name_or_path, torch_dtype=torch.bfloat16, _attn_implementation="flash_attention_2" if config.model.use_flash_attn else None
)
else:
from .molmo.config_molmo import MolmoConfig
from .molmo.modeling_molmo import MolmoForCausalLM
model_config = MolmoConfig.from_pretrained(config.model.name_or_path, trust_remote_code=True)
if model_config.max_position_embeddings < config.generate.max_length:
logger.warning(
f"ALERT, force adjusting model config max_position_embeddings upwards from {model_config.max_position_embeddings} to {config.generate.max_length}"
)
model_config.max_position_embeddings = config.generate.max_length
if config.model.use_flash_attn:
model_config.attention_type = "flash"
model = MolmoForCausalLM.from_pretrained(config.model.name_or_path, torch_dtype=torch.bfloat16, config=model_config, trust_remote_code=True)
logger.info(model)
if config.lora is not None:
peft_config = LoraConfig(
r=config.lora.rank,
lora_alpha=config.lora.alpha,
lora_dropout=config.lora.dropout,
bias=config.lora.bias, # pyright: ignore
task_type=config.lora.task_type,
target_modules=list(config.lora.target_modules),
)
model = get_peft_model(model=model, peft_config=peft_config)
log_trainable_parameters(model=model, logger=logger)
save_path = join_path("", config.save.path, run_name.run)
# Make sure directory exists if local
if not save_path.startswith("s3://"):
os.makedirs(os.path.dirname(save_path), exist_ok=True)
save_config(config, join_path("", save_path, "config.yaml")) # pyright: ignore
with TemporaryDirectory() as output_dir:
training_args = TrainingArguments(
run_name=run_name.run,
logging_steps=config.hparams.log_every_steps,
output_dir=output_dir,
eval_strategy="steps",
report_to="wandb",
# report_to=[], # disable logging to wandb, we will use a custom callback
optim=config.hparams.optim,
eval_steps=config.hparams.eval_every_steps,
learning_rate=config.hparams.learning_rate,
per_device_train_batch_size=config.hparams.batch_size,
per_device_eval_batch_size=config.hparams.eval_batch_size or config.hparams.batch_size,
gradient_checkpointing=config.hparams.gradient_checkpointing,
gradient_checkpointing_kwargs=(
dict(use_reentrant=False) # from this issue: /~https://github.com/huggingface/peft/issues/1142
if config.hparams.gradient_checkpointing and config.lora is not None
else {}
),
gradient_accumulation_steps=config.hparams.gradient_accumulation_steps,
max_steps=config.hparams.max_steps,
weight_decay=config.hparams.weight_decay,
dataloader_num_workers=config.max_workers,
load_best_model_at_end=True,
save_strategy="steps",
ddp_find_unused_parameters=config.hparams.find_unused_parameters,
save_steps=config.save.save_every_steps,
warmup_steps=config.hparams.warmup_steps,
warmup_ratio=config.hparams.warmup_ratio,
bf16=True,
label_names=["labels"], # fix from /~https://github.com/huggingface/transformers/issues/22885
max_grad_norm=config.hparams.clip_grad_norm,
remove_unused_columns=False,
eval_on_start=True,
metric_for_best_model=config.valid_data.metric_for_best_model,
)
data_collator = TruncatingCollator(max_length=config.generate.max_length)
checkpoint_callback = CheckpointUploadCallback(save_path=save_path, logger=logger)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
tokenizer=processor.tokenizer,
data_collator=data_collator,
callbacks=[checkpoint_callback],
)
# Train the model
trainer.train() # pyright: ignore
if get_rank() == 0:
with get_local_dir(join_path("", save_path, "best")) as best_dir:
if config.lora is not None:
logger.info("Merging LoRA adapters into the base model...")
model = model.merge_and_unload()
logger.info("LoRA adapters merged successfully.")
model.save_pretrained(best_dir)
logger.info("Saved best model to %s", best_dir)
# Uncomment to test speed of data loader
# train_dataloader = DataLoader(formatted_dataset["train"], batch_size=1, num_workers=4, shuffle=False)
# for entry in tqdm(train_dataloader):
# print("Step!")
# model.forward(**{k: v.to("cuda:0") for (k,v) in entry.items()})
def main():
train_config = make_cli(TrainConfig) # pyright: ignore
run_train(train_config)
if __name__ == "__main__":
main()