forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add distributed implementation for recommender system
- Loading branch information
Abhinav Arora
committed
Jan 24, 2018
1 parent
41844ea
commit 373f7df
Showing
1 changed file
with
239 additions
and
0 deletions.
There are no files selected for viewing
239 changes: 239 additions & 0 deletions
239
python/paddle/v2/fluid/tests/book_distribute/notest_recommender_system_dist.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,239 @@ | ||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import os | ||
import paddle.v2 as paddle | ||
import paddle.v2.fluid as fluid | ||
import paddle.v2.fluid.core as core | ||
import paddle.v2.fluid.layers as layers | ||
import paddle.v2.fluid.nets as nets | ||
from paddle.v2.fluid.optimizer import SGDOptimizer | ||
|
||
IS_SPARSE = True | ||
BATCH_SIZE = 256 | ||
PASS_NUM = 100 | ||
|
||
|
||
def get_usr_combined_features(): | ||
|
||
USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1 | ||
|
||
uid = layers.data(name='user_id', shape=[1], dtype='int64') | ||
|
||
usr_emb = layers.embedding( | ||
input=uid, | ||
dtype='float32', | ||
size=[USR_DICT_SIZE, 32], | ||
param_attr='user_table', | ||
is_sparse=IS_SPARSE) | ||
|
||
usr_fc = layers.fc(input=usr_emb, size=32) | ||
|
||
USR_GENDER_DICT_SIZE = 2 | ||
|
||
usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64') | ||
|
||
usr_gender_emb = layers.embedding( | ||
input=usr_gender_id, | ||
size=[USR_GENDER_DICT_SIZE, 16], | ||
param_attr='gender_table', | ||
is_sparse=IS_SPARSE) | ||
|
||
usr_gender_fc = layers.fc(input=usr_gender_emb, size=16) | ||
|
||
USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table) | ||
usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64") | ||
|
||
usr_age_emb = layers.embedding( | ||
input=usr_age_id, | ||
size=[USR_AGE_DICT_SIZE, 16], | ||
is_sparse=IS_SPARSE, | ||
param_attr='age_table') | ||
|
||
usr_age_fc = layers.fc(input=usr_age_emb, size=16) | ||
|
||
USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1 | ||
usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64") | ||
|
||
usr_job_emb = layers.embedding( | ||
input=usr_job_id, | ||
size=[USR_JOB_DICT_SIZE, 16], | ||
param_attr='job_table', | ||
is_sparse=IS_SPARSE) | ||
|
||
usr_job_fc = layers.fc(input=usr_job_emb, size=16) | ||
|
||
concat_embed = layers.concat( | ||
input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1) | ||
|
||
usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh") | ||
|
||
return usr_combined_features | ||
|
||
|
||
def get_mov_combined_features(): | ||
|
||
MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1 | ||
|
||
mov_id = layers.data(name='movie_id', shape=[1], dtype='int64') | ||
|
||
mov_emb = layers.embedding( | ||
input=mov_id, | ||
dtype='float32', | ||
size=[MOV_DICT_SIZE, 32], | ||
param_attr='movie_table', | ||
is_sparse=IS_SPARSE) | ||
|
||
mov_fc = layers.fc(input=mov_emb, size=32) | ||
|
||
CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories()) | ||
|
||
category_id = layers.data(name='category_id', shape=[1], dtype='int64') | ||
|
||
mov_categories_emb = layers.embedding( | ||
input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE) | ||
|
||
mov_categories_hidden = layers.sequence_pool( | ||
input=mov_categories_emb, pool_type="sum") | ||
|
||
MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict()) | ||
|
||
mov_title_id = layers.data(name='movie_title', shape=[1], dtype='int64') | ||
|
||
mov_title_emb = layers.embedding( | ||
input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE) | ||
|
||
mov_title_conv = nets.sequence_conv_pool( | ||
input=mov_title_emb, | ||
num_filters=32, | ||
filter_size=3, | ||
act="tanh", | ||
pool_type="sum") | ||
|
||
concat_embed = layers.concat( | ||
input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1) | ||
|
||
mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh") | ||
|
||
return mov_combined_features | ||
|
||
|
||
def model(): | ||
usr_combined_features = get_usr_combined_features() | ||
mov_combined_features = get_mov_combined_features() | ||
|
||
# need cos sim | ||
inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features) | ||
scale_infer = layers.scale(x=inference, scale=5.0) | ||
|
||
label = layers.data(name='score', shape=[1], dtype='float32') | ||
|
||
square_cost = layers.square_error_cost(input=scale_infer, label=label) | ||
|
||
avg_cost = layers.mean(x=square_cost) | ||
|
||
return avg_cost | ||
|
||
|
||
def func_feed(feeding, data, place): | ||
feed_tensors = {} | ||
for (key, idx) in feeding.iteritems(): | ||
tensor = core.LoDTensor() | ||
if key != "category_id" and key != "movie_title": | ||
if key == "score": | ||
numpy_data = np.array(map(lambda x: x[idx], data)).astype( | ||
"float32") | ||
else: | ||
numpy_data = np.array(map(lambda x: x[idx], data)).astype( | ||
"int64") | ||
else: | ||
numpy_data = map(lambda x: np.array(x[idx]).astype("int64"), data) | ||
lod_info = [len(item) for item in numpy_data] | ||
offset = 0 | ||
lod = [offset] | ||
for item in lod_info: | ||
offset += item | ||
lod.append(offset) | ||
numpy_data = np.concatenate(numpy_data, axis=0) | ||
tensor.set_lod([lod]) | ||
|
||
numpy_data = numpy_data.reshape([numpy_data.shape[0], 1]) | ||
tensor.set(numpy_data, place) | ||
feed_tensors[key] = tensor | ||
return feed_tensors | ||
|
||
|
||
def main(): | ||
cost = model() | ||
optimizer = SGDOptimizer(learning_rate=0.2) | ||
optimize_ops, params_grads = optimizer.minimize(cost) | ||
|
||
train_reader = paddle.batch( | ||
paddle.reader.shuffle( | ||
paddle.dataset.movielens.train(), buf_size=8192), | ||
batch_size=BATCH_SIZE) | ||
|
||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
|
||
t = fluid.DistributeTranspiler() | ||
|
||
# all parameter server endpoints list for spliting parameters | ||
pserver_endpoints = os.getenv("PSERVERS") | ||
# server endpoint for current node | ||
current_endpoint = os.getenv("SERVER_ENDPOINT") | ||
# run as trainer or parameter server | ||
training_role = os.getenv("TRAINING_ROLE", "TRAINER") | ||
t.transpile( | ||
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2) | ||
|
||
if training_role == "PSERVER": | ||
if not current_endpoint: | ||
print("need env SERVER_ENDPOINT") | ||
exit(1) | ||
pserver_prog = t.get_pserver_program(current_endpoint) | ||
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) | ||
exe.run(pserver_startup) | ||
exe.run(pserver_prog) | ||
elif training_role == "TRAINER": | ||
exe.run(fluid.default_startup_program()) | ||
trainer_prog = t.get_trainer_program() | ||
|
||
feeding = { | ||
'user_id': 0, | ||
'gender_id': 1, | ||
'age_id': 2, | ||
'job_id': 3, | ||
'movie_id': 4, | ||
'category_id': 5, | ||
'movie_title': 6, | ||
'score': 7 | ||
} | ||
|
||
for pass_id in range(PASS_NUM): | ||
for data in train_reader(): | ||
outs = exe.run(trainer_prog, | ||
feed=func_feed(feeding, data, place), | ||
fetch_list=[cost]) | ||
out = np.array(outs[0]) | ||
if out[0] < 6.0: | ||
# if avg cost less than 6.0, we think our code is good. | ||
exit(0) | ||
else: | ||
print("environment var TRAINER_ROLE should be TRAINER os PSERVER") | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |