-
Notifications
You must be signed in to change notification settings - Fork 797
/
Copy pathpersonalized.py
220 lines (194 loc) · 6.94 KB
/
personalized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import numpy as np
import PIL
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
import random
training_templates_smallest = [
'photo of a sks {}',
]
reg_templates_smallest = [
'photo of a {}',
]
imagenet_templates_small = [
'a photo of a {}',
'a rendering of a {}',
'a cropped photo of the {}',
'the photo of a {}',
'a photo of a clean {}',
'a photo of a dirty {}',
'a dark photo of the {}',
'a photo of my {}',
'a photo of the cool {}',
'a close-up photo of a {}',
'a bright photo of the {}',
'a cropped photo of a {}',
'a photo of the {}',
'a good photo of the {}',
'a photo of one {}',
'a close-up photo of the {}',
'a rendition of the {}',
'a photo of the clean {}',
'a rendition of a {}',
'a photo of a nice {}',
'a good photo of a {}',
'a photo of the nice {}',
'a photo of the small {}',
'a photo of the weird {}',
'a photo of the large {}',
'a photo of a cool {}',
'a photo of a small {}',
'an illustration of a {}',
'a rendering of a {}',
'a cropped photo of the {}',
'the photo of a {}',
'an illustration of a clean {}',
'an illustration of a dirty {}',
'a dark photo of the {}',
'an illustration of my {}',
'an illustration of the cool {}',
'a close-up photo of a {}',
'a bright photo of the {}',
'a cropped photo of a {}',
'an illustration of the {}',
'a good photo of the {}',
'an illustration of one {}',
'a close-up photo of the {}',
'a rendition of the {}',
'an illustration of the clean {}',
'a rendition of a {}',
'an illustration of a nice {}',
'a good photo of a {}',
'an illustration of the nice {}',
'an illustration of the small {}',
'an illustration of the weird {}',
'an illustration of the large {}',
'an illustration of a cool {}',
'an illustration of a small {}',
'a depiction of a {}',
'a rendering of a {}',
'a cropped photo of the {}',
'the photo of a {}',
'a depiction of a clean {}',
'a depiction of a dirty {}',
'a dark photo of the {}',
'a depiction of my {}',
'a depiction of the cool {}',
'a close-up photo of a {}',
'a bright photo of the {}',
'a cropped photo of a {}',
'a depiction of the {}',
'a good photo of the {}',
'a depiction of one {}',
'a close-up photo of the {}',
'a rendition of the {}',
'a depiction of the clean {}',
'a rendition of a {}',
'a depiction of a nice {}',
'a good photo of a {}',
'a depiction of the nice {}',
'a depiction of the small {}',
'a depiction of the weird {}',
'a depiction of the large {}',
'a depiction of a cool {}',
'a depiction of a small {}',
]
imagenet_dual_templates_small = [
'a photo of a {} with {}',
'a rendering of a {} with {}',
'a cropped photo of the {} with {}',
'the photo of a {} with {}',
'a photo of a clean {} with {}',
'a photo of a dirty {} with {}',
'a dark photo of the {} with {}',
'a photo of my {} with {}',
'a photo of the cool {} with {}',
'a close-up photo of a {} with {}',
'a bright photo of the {} with {}',
'a cropped photo of a {} with {}',
'a photo of the {} with {}',
'a good photo of the {} with {}',
'a photo of one {} with {}',
'a close-up photo of the {} with {}',
'a rendition of the {} with {}',
'a photo of the clean {} with {}',
'a rendition of a {} with {}',
'a photo of a nice {} with {}',
'a good photo of a {} with {}',
'a photo of the nice {} with {}',
'a photo of the small {} with {}',
'a photo of the weird {} with {}',
'a photo of the large {} with {}',
'a photo of a cool {} with {}',
'a photo of a small {} with {}',
]
per_img_token_list = [
'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
]
class PersonalizedBase(Dataset):
def __init__(self,
data_root,
size=None,
repeats=100,
interpolation="bicubic",
flip_p=0.5,
set="train",
placeholder_token="dog",
per_image_tokens=False,
center_crop=False,
mixing_prob=0.25,
coarse_class_text=None,
reg = False
):
self.data_root = data_root
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
# self._length = len(self.image_paths)
self.num_images = len(self.image_paths)
self._length = self.num_images
self.placeholder_token = placeholder_token
self.per_image_tokens = per_image_tokens
self.center_crop = center_crop
self.mixing_prob = mixing_prob
self.coarse_class_text = coarse_class_text
if per_image_tokens:
assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
if set == "train":
self._length = self.num_images * repeats
self.size = size
self.interpolation = {"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
self.reg = reg
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
placeholder_string = self.placeholder_token
if self.coarse_class_text:
placeholder_string = f"{self.coarse_class_text} {placeholder_string}"
if not self.reg:
text = random.choice(training_templates_smallest).format(placeholder_string)
else:
text = random.choice(reg_templates_smallest).format(placeholder_string)
example["caption"] = text
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
h, w, = img.shape[0], img.shape[1]
img = img[(h - crop) // 2:(h + crop) // 2,
(w - crop) // 2:(w + crop) // 2]
image = Image.fromarray(img)
if self.size is not None:
image = image.resize((self.size, self.size), resample=self.interpolation)
image = self.flip(image)
image = np.array(image).astype(np.uint8)
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
return example