Skip to content

IBM: Sample Jupyter Notebook for playing around with the Anomaly Detection service to be made available on API Hub

License

Notifications You must be signed in to change notification settings

TatjanaChernenko/IBM_anomaly-detection-code-pattern

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


Talks

  1. AAAAI 2023 1.5-hour Lab based tutorial
  2. MLSys 2022 half day tutorial
  3. KDD 2022 3-hour tutorial
  4. ICDE 2022 tutorial
  5. DASFAA 2022 tutorial

Anomaly Detection Service


Example : Setting Local Juputer Environment

  1. Python 3
  2. Credentials to access the API service (Please follow the instructions or tutorial)
  3. Clone the repository
git clone /~https://github.com/IBM/anomaly-detection-code-pattern.git
cd anomaly-detection-code-pattern/
  1. (Optional) Create a virtual environment
virtualenv ad_env
source ad_env/bin/activate
  1. Install required packages
pip install -r requirements.txt
  1. Open Jupyter notebook in current directory
python -m ipykernel install --user --name=ad_env  # optional: add virtual environment to jupyter notebook
jupyter notebook

Notebooks

Here are the list of provided notebooks:

  1. Univariate_AD_service_public_data.ipynb: Anomaly detection on univariate public data
  2. Univariate_AD_service_sample_data.ipynb: Anomaly detection on univariate sample data
  3. Multivariate_AD_service_sample_data.ipynb: Anomaly detection on multivariate sample data
  4. Regression-aware_AD_service_sample_data.ipynb: Regression based anomaly detection
  5. MixtureModel-aware_AD_service_sample_data.ipynb: Mixture model based anomaly detection

Additional Links

  1. API Service in IBM API Hub
  2. API Service in IBM Learning Path

About

IBM: Sample Jupyter Notebook for playing around with the Anomaly Detection service to be made available on API Hub

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.9%
  • Python 1.1%