- AAAAI 2023 1.5-hour Lab based tutorial
- MLSys 2022 half day tutorial
- KDD 2022 3-hour tutorial
- ICDE 2022 tutorial
- DASFAA 2022 tutorial
- Python 3
- Credentials to access the API service (Please follow the instructions or tutorial)
- Clone the repository
git clone /~https://github.com/IBM/anomaly-detection-code-pattern.git
cd anomaly-detection-code-pattern/
- (Optional) Create a virtual environment
virtualenv ad_env
source ad_env/bin/activate
- Install required packages
pip install -r requirements.txt
- Open Jupyter notebook in current directory
python -m ipykernel install --user --name=ad_env # optional: add virtual environment to jupyter notebook
jupyter notebook
Here are the list of provided notebooks:
- Univariate_AD_service_public_data.ipynb: Anomaly detection on univariate public data
- Univariate_AD_service_sample_data.ipynb: Anomaly detection on univariate sample data
- Multivariate_AD_service_sample_data.ipynb: Anomaly detection on multivariate sample data
- Regression-aware_AD_service_sample_data.ipynb: Regression based anomaly detection
- MixtureModel-aware_AD_service_sample_data.ipynb: Mixture model based anomaly detection
- API Service in IBM API Hub
- API Service in IBM Learning Path