-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtran_rot2rad.m
33 lines (31 loc) · 1.08 KB
/
tran_rot2rad.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
function [radian] = tran_rot2rad(R)
%TRAN_ROT2RAD Decompose the given 3D rotation matrix in ZYX Euler angle form.
%
% [RADIAN] = TRAN_ROT2RAD(R)
% (matrix) R : The given 3D rotation matrix (3x3 matrix)
% (matrix) RADIAN: The decomposed Euler angle [rad] (1x3 matrix)
%
% Note: Orientation, RADIAN, is represented by 1x3 matrix whose elements are
% rotation angle with respect to x, y, and z axes, respectively.
%
% Note: R(1,1) and R(3,3) should not be zero due to singularity.
%
% Reference:
% [1] S.M. LaValle, Planning Algorithm, Cambridge, 2006,
% URL: http://planning.cs.uiuc.edu/node102.html
% URL: http://planning.cs.uiuc.edu/node103.html
%
% Example:
% R = tran_rad2rot([pi/6, pi/6, pi/6]);
% angle = tran_rot2rad(R)
%
% See also tran_rad2rot.
if det(R) < 0
R = -R;
end
if R(1,1) == 0 || R(3,3) == 0
error('An element at (1,1) or (3,3) is zero!');
end
radian = [ atan2( R(3,2), R(3,3)), ...
atan2(-R(3,1), norm([R(3,2), R(3,3)])), ...
atan2( R(2,1), R(1,1)) ];