
TruMan: Trust Management for Vehicular Networks
Renan Greca and Luiz Carlos Pessoa Albini

Department of Informatics – Federal University of Paraná (UFPR) – Curitiba, Brazil
Email: rdmgreca@inf.ufpr.br, albini@inf.ufpr.br

Abstract—By integrating processors and wireless communica-
tion units into vehicles, it is possible to create a vehicular ad-hoc
network (VANET), in which cars share data amongst themselves
in order to cooperate and make roads safer and more efficient. A
decentralized ad-hoc solution, which does not rely on previously
existing infrastructure, Internet connection or server availability,
is preferred so the message delivery latency is as short as possible
in the case of life-critical situations. However, as it is the case
with most new technologies, VANETs will be a prime target for
attacks performed by malicious users, who may benefit from
affecting traffic conditions. In order to avoid such attacks, one
important feature for vehicular networks is trust management,
which allows nodes to filter incoming messages according to
previously established trust values assigned to other nodes. To
generate these trust values, nodes use information acquired from
past interactions. Nodes which frequently share false or irrelevant
data must have lower trust values than the ones which appear
to be reliable. This work proposes TruMan, a trust management
model in the context of daily commutes, utilizing the Working
Day Movement Model as a basis for node mobility. The results
prove to be accurate, detecting nearly all malicious nodes with
very few false positives when they constitute up to 50% of the
network. The model is also very efficient thanks to the low
complexity of the algorithm constituting the trust model.

I. INTRODUCTION

Within the next few years, a substantial share of new
vehicles will come equipped with networking features [1].
These features will allow vehicles to quickly share data with
other nearby devices and can be useful tools to reduce traffic
and the risk of accidents. Over one million people lose their
lives to traffic accidents every year [2], so solutions to improve
road safety are crucial for modern life. By quickly sharing
data with neighboring vehicles without the need of an Internet
connection, smart vehicles can alert drivers of important road
conditions [3], while autonomous vehicles can synchronize
their movements to maximize traffic throughput [4].

The communication standard for vehicular communication
is the IEEE 802.11p or Wireless Access in Vehicular En-
vironments (WAVE) [5]. It describes two types of nodes
for vehicular networks: on-board units (OBUs) and road-
side units (RSUs). Communication between two OBUs is
called vehicle-to-vehicle (V2V) communication, while com-
munication between an OBU and an RSU is called vehicle-to-
infrastructure (V2I) communication. This study focuses only
on V2V scenarios, and therefore, any references to Vehicular
ad-hoc networks (VANETs) and their nodes refer exclusively
to vehicles with on-board units.

As expected for new technologies, vehicular communica-
tions can become an appealing target for malicious users
and attackers. Some issues that could be exploited in such

network include: vehicles with faulty sensors [6]; vehicles
broadcasting false data [7]; a flood of false data to generate
a distributed denial of service (DDoS) scenario or to divert
traffic [8]; eavesdropping on other vehicles’ communications,
signal jamming or stalking [6].

Each of these problems requires specific solutions, although
there are ways of making the network safer in general. One
way is taking advantage of the concept of trust between
network members. By having nodes remembering previous
interactions with one another, it is possible for them to build
trust relationships and avoid those attacks that involve the
spread of false data. Trust solutions for VANETs are gen-
erally classified into data-oriented, emphasizing the message
contents, or entity-based, emphasizing message senders.

This work proposes a new and improved entity-based trust
model to compute the trust between any pair of nodes in a
vehicular network. Using the proposed trust model, nodes in
a vehicular network are able to identify which other nodes
are likely malicious. Since the network is dynamic, nodes
acquire more knowledge as time passes and the results of the
algorithm become more precise, taking advantage of social
properties of VANETs [9] [10] to build strong relationships
between frequently connected nodes. Simulations demonstrate
that nodes are able to correctly identify more than 95% of
nodes in the network (malicious or not). The algorithm cor-
rectness depends upon the velocity of the nodes, the frequency
of the information exchanged between them and the running
time, i.e. the longevity, of the algorithm.

The remainder of this paper is organized as follows. Section
II details the proposed trust model; Section III contains the
simulation results which demonstrate the usefulness of the
model; Section IV presents the previously published trust mod-
els for vehicular networks and compares them with TruMan;
and Section V has the conclusion and future work directions.

II. TRUMAN

The objective of the TruMan trust model is to allow nodes to
infer whether or not other nodes in the network are malicious.
The algorithm that dictates the trust model runs continuously,
with iterations happening in preset intervals. In every iteration,
a node collects information from its neighbors and runs a
combination of algorithms to detect malicious nodes in the
known network. This information is maintained in a directed
graph T = (V,E), in which V is the set of known vertices
and E is the set of known trust relationships between pairs
u, v ∈ V . Graph T is known as the trust graph.

Each edge (u, v) ∈ E stores a value between 0 and 1 which
represents the degree of trust u has for v. This value is called
the opinion of u about v. At the start of the execution, edges
have value 0.5; this value increases when nodes have positive
interactions and decreases otherwise. A threshold 0 < h < 1
is used to define the minimum weight for a positive edge,
meaning that the origin node trusts the destination node.

After collecting information from other nodes, TruMan
performs two steps: (i) it divides the network graph into
strongly connected components using Tarjan’s algorithm; (ii)
it uses a graph coloring algorithm as a heuristic to determine
which nodes to trust or not.

The detailed descriptions of both algorithms are below,
followed by the complete process of each iteration of the
Truman trust model.

A. Tarjan’s strongly connected components algorithm
The use of Tarjan’s strongly connected components algo-

rithm [11] is an important aspect of TruMan’s efficiency. This
allows a large graph to be abstracted into a smaller one,
which therefore reduces the input for further steps. Given a
directed graph T = (V,E), a strongly connected component
is defined as a group of nodes in which, for any pair of nodes
u, v ∈ V , there is a path from u to v and a path from v
to u. For the purposes of trust management, this definition
is extended to accept only paths of edges with weight above
a predetermined threshold h. Every node of graph T must
belong to a component.

The number of components is, at most, |V |: in a worst-case
scenario, each node is placed into its own component. The
complexity is O(|V |+ |E|) for a graph T = (V,E).

From the output of Tarjan’s algorithm, an undirected com-
ponent graph C = (V ′, E′) is formed. Each v′ ∈ V ′ is the
abstraction of one component identified by Tarjan’s algorithm,
while the edges e′ ∈ E′ are edges from T between nodes that
do not belong in the same component (e.g. if u and v are
separated into u′ and v′, e = (u, v) becomes e′ = (u′, v′).

B. Graph coloring with minimum colors
The algorithm proposed in [12] is an efficient approach to

graph coloring. Graph coloring is one of the possible heuristics
used to detect malicious nodes after the generation of the
component graph using Tarjan’s algorithm. Out of the tested
heuristics, it presents the best results, so it has been chosen as
the heuristic for the trust model.

It has been mathematically proven that any planar graph
can be colored with at most four colors [13], but discovering
the smallest number of colors necessary to color an arbitrary
graph (called the chromatic number of the graph) is an NP-
hard problem [14]. In [12], the authors propose to color a graph
using the minimum possible amount of colors. Although they
do not prove that their algorithm always uses the smallest pos-
sible amount of colors, the output is always a correct coloration
and the algorithm is nevertheless efficient. The complexity of
the algorithm is O(|E′|) for a graph C = (V ′, E′). As a
comparison, the classic DSATUR algorithm for graph coloring
has complexity O(|V ′|2) [15].

C. The TruMan algorithm
TruMan is based on the MaNI algorithm [16], which sug-

gested the use of Tarjan’s algorithm and the graph coloring
algorithm. However, MaNI was developed for static networks
such as social networks, and is executed by an external
supervising agent (i.e. outside of the network), making it
unsuitable for a vehicular network.

In order to work with dynamic networks, the TruMan algo-
rithm runs iterations at predetermined intervals. Furthermore,
the algorithm runs in a decentralized fashion, meaning each
node in the network runs its own instance of the algorithm.
Each node starts knowing information only about itself and
maintains its own abstraction of the network surrounding it.
Every node u stores a representation of the network in the form
of a static, connected and directed trust graph T = (V,E), in
which V is the set of nodes node u is aware of and E is the set
of trust relationships (opinions) u knows between members of
V . Since each node has its own network representation and it
changes over time, there is a Tui = (V ui , E

u
i) for every node

u and iteration i.
At first, the node collects and organizes information. A

prerequisite of this step is a test that correctly classifies a
neighboring node as benign or malicious. Testing the correct-
ness of neighboring nodes is a problem in and of itself, which
is beyond the scope of this paper, but studies on this topic can
be found on [7], [17], [18].

Every time a neighboring node v is tested as benign, the
value of u→ v increases and the trust graph T vi−1 is merged
into u’s trust graph. After this, a new Tui is formed, which is
used for the remaining steps.

After the collection of data, Tui is separated into strongly
connected components using Tarjan’s algorithm [11]. For each
node in a component, there is a path formed by edges of weight
higher than the threshold h to each other node in the same
component. In other words, within a single component, all
nodes trust one another directly or indirectly; nodes that do not
satisfy this condition are separated into different components.
Each of these components becomes a node of a component
graph Cui = (V ′ui , E′ui).

The creation of Cui simplifies the remaining computation.
Since each vertex v′ ∈ V ′ui is a component of Tui in which all
nodes trust each other, for the purposes of identifying mali-
cious nodes, all nodes within each of those components can be
treated as the same. They can either be benign nodes which
legitimately trust one another, or malicious nodes colluding
with each other. After the formation of Cui , a heuristic is used
to classify the nodes as benign or malicious.

The coloring heuristic is used to classify nodes, which uses
the algorithm described in II-B [12], although other heuristics
may be considered. After running the graph coloring algorithm
with graph Cui as input, the color whose nodes in Cui represent
the most nodes in Tui is classified as correct, and all others
are classified as malicious. Once this information from Cui is
brought back to graph Tui , it is trivial to label the nodes in
Tui as either benign or malicious based on the classifications
of their components.

The complexity of the whole algorithm can be calculated
by adding the most costly operations involved. As discussed
above, Tarjan’s algorithm has a complexity of O(|V |+|E|) (for
the trust graph T), while the graph coloring algorithm has a
complexity of O(|E′|) (for the component graph C). The most
costly part of the algorithm is the graph merge operation that
happens between trusted nodes. The complexity of the graph
merge algorithm is O(|E|) for each neighbor a node has in an
iteration; this number is at most |V |. The total complexity of
TruMan is, therefore, O(|V |+ |E|)+O(|E′|)+O(|V |× |E|).
Since |E′| ≤ |E| and |V | + |E| ≤ |V | × |E|, the complexity
can be simplified to O(|V | × |E|).

In summary, every node u runs the following steps in each
iteration to detect malicious nodes in the network:

1) Node u checks which are its neighbors. New discovered
nodes and new formed edges are added to Tui . Edges
are created with weight 0.5.

2) Node u tests all its neighbors to discover which ones can
be directly trusted or not. New trust values are computed
for the edges using the average between the previous
value and either 1 (if the neighbor is trustworthy) or 0
(otherwise).

3) If a neighbor v is trustworthy, u merges T vi−1 into Tui .
4) Tarjan’s algorithm is executed to identify the strongly

connected components of Tui , resulting in a component
graph Cui .

5) The graph coloring algorithm is executed on Cui and
nodes are classified as benign or malicious.

III. RESULTS

In order to test the TruMan trust model, simulations were
made using an implementation of the algorithm in Python.
To generate the input graphs with node mobility, the ONE
simulator [19] was used in conjunction with the Working Day
Movement Model [20], which provides a strong similarity with
vehicle movement in real life. Snapshots of the network were
taken every 10 simulated seconds, and these snapshots were
used as input for the algorithm. Malicious nodes misbehave
by randomizing the values of their neighbors’ opinions.

TABLE I: Simulation parameters

Parameter Value
Duration 86400 seconds
Work day length 28800 seconds
Std. dev. departure time 7200 seconds
Node velocity 7 10m/s
Simulation area approximately 14km2

Number of nodes 150 (WDMM) + 10 (random)

Most of the parameters for the simulator were taken from
the article detailing the Working Day Movement Model [20].
Different parameters are shown in I. Since this simulation is
for vehicles instead of pedestrians, there are no buses in the
model and every node is guaranteed to own a vehicle and
travel by car. The parameters regarding offices, meeting spots
and shopping were kept intact. Few nodes move randomly to
simulate vehicles that do not follow daily patterns.

A. Network Density

The communication range varies from 10m to 50m, to
illustrate the impact of different network densities. Network
density (δ) is a value which abstracts the volume and frequency
of connections by estimating how much of the environment is
covered by the network. For TruMan, higher densities yield
better results, since nodes can construct and update their
models of the network faster (this is demonstrated in III-B).
It is calculated using the transmission range (ρ), the amount
of nodes (η), and the total area (α).

The coverage of a single node is the circumference around
it formed by the transmission radius. This is divided by two
to compensate for overlapping, then multiplied by the number
of nodes to estimate the maximum coverage area. Finally, the
value is divided by the total environment area. The network

density formula is: δ =
ρ2π
2 ×η
α

Simulations shown here have densities between 0.001 (ρ =
10m) and 0.04 (ρ = 50m). As a comparison, the density of
the city of São Paulo (Brazil) was calculated as 2.24 with
ρ = 10m, a much higher value than what is necessary for a
satisfactory performance of the algorithm.

B. Simulations

To improve readability, all figures in this section follow the
same format: X axis shows the results of sequential iterations,
ranging from 0 to 8639; Y axis shows a percentage of all nodes
in the network, ranging from 0 to 100; blue line represents the
percentage of nodes detected out of the complete network;
magenta is the percentage of malicious nodes in the network
(ground truth); green represents the nodes correctly identified
as malicious (true positives); cyan represents the undetected
malicious nodes (false negatives); red represents the benign
nodes incorrectly identified as malicious (false positives).

1 shows the results of simulations running with 10% of
nodes acting maliciously, with communications range varying
from 10m to 50m. It is possible to see how the increase in
the range allows the algorithm to converge sooner, taking over
8000 iterations with 10m range and achieving solid results at
just over 1000 iterations with 50m range.

2 shows the variation of results for different amounts of
malicious nodes in the network. By the end of one day, the
algorithm is able to detect all malicious nodes when they are
up to 30% of the network. At 40%, a small part of malicious
nodes are yet to be detected. At 50%, as expected, the results
are inconsistent as the network is completely split between
benign and malicious nodes; at this point, the network is
completely compromised. The amount of malicious nodes also
affects the convergence of the algorithm, since nodes do not
trust information from malicious neighbors.

3 shows the execution of the algorithm over the course of 7
days. Most malicious nodes are identified by the end of the first
day; in the following iterations, the algorithm finishes building
the network model and sorts out remaining false negative or
false positive results. After iteration 20000, the results are
completely consistent.

(a) (b) (c)

Fig. 1: Simulation with 10% malicious nodes and ρ = (a) 10m, (b) 30m or (c) 50m.

(a) (b) (c)

(d) (e) (f)

Fig. 2: Simulation with ρ = 10m and (a) 1%, (b) 5%, (c) 10%, (d) 30%, (e) 40% or (f) 50% malicious.

IV. RELATED WORK

Several models have been proposed to solve the problem of
trust in vehicular networks. This analysis of related work is
based on [21], which proposes eight desired properties for a
trust management model for VANETs. In the first part of this
section, these properties are described with an assessment of
whether or not TruMan satisfies their conditions. Then, some
of the most relevant models are described, considering how
well they satisfy the desired properties. II shows how they
compare with TruMan.

A. Properties

Decentralized trust establishment: nodes must be able to
form their own trust values about other nodes. Nodes may or
may not use information from other trustworthy nodes to build
trust values. TruMan satisfies this as it is built from the ground
up for decentralized systems.

Coping with sparsity: the model still functions when there
are few nodes populating the network. The experiments using
low density values demonstrate that TruMan works in reason-
ably sparse networks. Due to its decentralized nature, it can
also work on isolated chunks of the network.

Event/task and location/time dynamics: how the model

Fig. 3: 7 days scenario: 10m range and 10% malicious nodes.

reacts to different situations depending on what, where and
when events happen. Although this has not been used in the
simulations in this paper, TruMan can easily be extended to
consider time and location as long as nodes store geolocation
and timestamp data.

Scalability: the model can work on very large networks at
high speeds. Due to the low complexity of the algorithms used
in the model, TruMan can be highly scalable, as it does not
incur substantial pressure on the vehicles’ on-board units. It
has also been demonstrated that iterations of the algorithm
do not need to run extremely frequently in order to detect
malicious nodes with high accuracy.

Integrated confidence measure: allows nodes to estimate
how useful the output of the algorithm is. Since nodes using
TruMan store trust values as a number between 0 and 1, this
value can be used as a confidence measure of the opinion. The
closer it is to 1, the higher the chance that it is accurate.

System level security: requires authentication of nodes par-
ticipating in the network. This has not been considered in
evaluations of TruMan. However, it can be included as a
separate security model during the transmission of messages.

Sensitivity to privacy concerns: avoids eavesdropping and
stalking by malicious nodes. TruMan has not been designed
with this in mind, but it does not inhibit privacy protection.
However, it does require that nodes cannot be anonymous.

Robustness: the model’s resistance to attacks. TruMan satis-
fies this property. Malicious nodes are quickly and accurately
identified, making it difficult for them to perform attacks.
Experiments show that, when fewer than 50% of nodes in
the network are malicious, Truman performs as expected.
Collusion attacks must be performed by more than half of the
entire network, in which case the network is considered com-
promised. Furthermore, since nodes take into consideration
experiences from other trustworthy nodes, a malicious node
that occasionally behaves correctly can still be identified.

B. Comparison with other trust models

For the Malicious Node Identification Algorithm (MaNI)
proposed in [16], the authors present a malicious node identi-

TABLE II: Properties of Truman and related work

Property Truman [16] [22] [23] [24] [25]
Decentralized - -
Sparsity - -
Dynamics - - -
Scalability -
Confidence -
Security - - -
Privacy - - - -
Robustness - - - -
Efficiency - - - -
Cost |V | ∗ |E| |V |+ |E| n/a n/a n/a n/a

fication scheme based on strongly connected components and
graph coloring. The model is proposed for complex networks
in general, but it is designed only for static networks and the
algorithm relies on a global observer which has information
about the complete network. It is, however, very efficient
thanks to the classification of nodes into components and the
usage of a fast heuristic. The usage of strongly connected
components and coloring serves as a basis for TruMan, which
is expanded to work on distributed and dynamic networks such
as vehicular networks.

The model proposed in [22] uses several criteria to judge
whether or not a received message is trustworthy. First, nodes
are classified by their roles, used for vehicles which should be
automatically trustworthy (i.e. police cars). Nodes also store
their experience each time an event message is received (if
one neighboring node reported an event which did not turn out
to be true, its trust value is reduced). Additionally, messages
have higher reliability when their senders are closer in time
and space to the reported event. When several messages about
the same event are received, a node can either choose the
n most trustworthy senders, according to the priority (fewer
chosen nodes mean a faster, but less precise, decision), or
compute the majority opinion of the messages according to
each sender’s trust value. However, the model relies only
on direct interaction between pairs of nodes, so no form of
indirect trust is considered.

In [23], the authors propose to evaluate messages utilizing
a cluster-based trust model. By separating nodes into clusters
with their geographical neighbors, it is possible to distribute
the evaluation of messages using previously formed opinions.
When a node sends a message, the cluster-leader must ag-
gregate the other nodes’ opinions on that message. Messages
are only forwarded to other clusters if the aggregate opinion
is above a certain threshold. Additionally, nodes that receive
the message only act if the overall trust on it is above another
threshold. However, it is unclear how the model behaves when
the network is too sparse to form relevant clusters, neither
do the authors inform how the aforementioned thresholds
are decided. Furthermore, maintaining clusters in a highly
dynamic network is a costly job and, if the cluster leader itself
is malicious, all cluster information become untrustworthy.

The ART model proposed in [24] works in two main
steps: data gathering and malicious node detection. It uses

the Dempster-Shafter theory of evidence to merge data com-
ing from other nodes. Then, it uses a Cosine-based metric
to compare two nodes’ trust vectors (a series of opinions
regarding other nodes). However, these steps require several
intensive calculations, which greatly increase the complexity
of the algorithm. The authors present no details on how it deals
with sparsity, dynamics, scalability, security and privacy.

The authors of [25] propose a cloud-based solution for
a trust model, which requires an Internet-based global trust
manager. This has the advantage of simplifying properties such
as handling sparsity and scalability, but also makes the system
slower in general, especially in situations in which mobile
communication is slow or unreliable. It also makes the system
prone to attacks, since the whole system collapses if the global
trust manager is attacked.

Finally, it is worth noting that, aside from [16], none of the
related work presents complexity calculations for its algorithm.
Considering the scale of the problem, TruMan’s cost of
O(|V | × |E|) is very low without sacrificing completeness
and correctness. The model satisfies the desired properties of
a trust model, making it viable for real-world use.

V. CONCLUSION

The concept of trust as applied in VANETs is a powerful
tool for those seeking to reduce the spread of false information
as much as possible. In this paper, a new trust model for vehic-
ular networks was presented, which combines the efficiency
of previous algorithms in order to generate fast and accurate
results. Nearly all malicious nodes are detected when they
constitute up to 50%, with very few false positives polluting
the results, without incurring substantial cost.

As nodes travel across the network and collect more data
from neighbors, they are able to form an abstraction of the
network which can be used to detect malicious nodes. By
placing nodes into strongly connected components, a network
containing a large amount of node can be simplified into a
much smaller one. Using a simple graph coloring algorithm,
most malicious nodes stand out by having different colors than
the majority of nodes. This allows for a low complexity ap-
proach to malicious node identification in a dynamic network.

The experiments show that vehicles within a network can
form a sufficient model of the network in around one day, and
by then they are also able to detect nearly every malicious node
in the network, with a very tiny amount of false positives. As
the network changes in shape, nodes acquire more information
and are able to make even more accurate classifications
of malicious nodes around them. Future work includes the
extension of the proposed model to use V2I communications.

REFERENCES

[1] R. Viereckl, D. Ahlemann, A. Koster, E. Hirsh, F. Kuhnert, J. Mohs,
M. Fischer, W. Gerling, K. Gnanasekaran, and J. Kusb, “Connected car
report 2016: Opportunities, risk, and turmoil on the road to autonomous
vehicles,” http://www.strategyand.pwc.com/reports/connected-car-2016-
study, 2016, [Online; accessed April 11, 2017].

[2] World Health Organization, “Number of road traffic deaths,” 2013,
[Online; accessed March 27, 2017].

[3] C. T. Barba, M. A. Mateos, P. R. Soto, A. M. Mezher, and M. A.
Igartua, “Smart city for vanets using warning messages, traffic statistics
and intelligent traffic lights,” in Intelligent Vehicles Symposium (IV),
2012 IEEE. IEEE, 2012, pp. 902–907.

[4] M. Amoozadeh, H. Deng, C.-N. Chuah, H. M. Zhang, and D. Ghosal,
“Platoon management with cooperative adaptive cruise control enabled
by vanet,” Vehicular communications, vol. 2, no. 2, pp. 110–123, 2015.

[5] D. Jiang and L. Delgrossi, “Ieee 802.11 p: Towards an international
standard for wireless access in vehicular environments,” in Vehicular
Technology Conference, 2008. VTC Spring 2008., 2008, pp. 2036–2040.

[6] J. T. Isaac, S. Zeadally, and J. S. Camara, “Security attacks and solutions
for vehicular ad hoc networks,” IET communications, vol. 4, no. 7, pp.
894–903, 2010.

[7] P. Golle, D. Greene, and J. Staddon, “Detecting and correcting malicious
data in vanets,” in Proceedings of the 1st ACM international workshop
on Vehicular ad hoc networks. ACM, 2004, pp. 29–37.

[8] M. T. Garip, M. E. Gursoy, P. Reiher, and M. Gerla, “Congestion attacks
to autonomous cars using vehicular botnets,” in NDSS Workshop on
Security of Emerging Networking Technologies (SENT), 2015.

[9] F. D. Cunha, A. C. Vianna, R. A. Mini, and A. A. Loureiro, “How
effective is to look at a vehicular network under a social perception?”
in Wireless and Mobile Computing, Networking and Communications
(WiMob), 2013 IEEE 9th Inter. Conf. on, 2013, pp. 154–159.

[10] ——, “Is it possible to find social properties in vehicular networks?”
in 2014 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2014, pp. 1–6.

[11] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[12] A. Mittal, P. Jain, S. Mathur, and P. Bhatt, “Graph coloring with min-
imum colors: An easy approach,” in Communication Systems and Net-
work Technologies (CSNT), 2011 International Conference on. IEEE,
2011, pp. 638–641.

[13] K. Appel, W. Haken, and J. Koch, “Every planar map is four colorable,”
Bull. Amer. Math. Soc, vol. 82, no. 5, pp. 711–712, 1976.

[14] A. Sánchez-Arroyo, “Determining the total colouring number is np-
hard,” Discrete Mathematics, vol. 78, no. 3, pp. 315–319, 1989.

[15] D. Brélaz, “New methods to color the vertices of a graph,” Communi-
cations of the ACM, vol. 22, no. 4, pp. 251–256, 1979.

[16] G. Vernize, A. L. P. Guedes, and L. C. P. Albini, “Malicious nodes
identification for complex network based on local views,” The Computer
Journal, vol. 58, no. 10, pp. 2476–2491, 2015.

[17] W. Li, F. Bassi, D. Dardari, M. Kieffer, and G. Pasolini, “Defective
sensor identification for wsns involving generic local outlier detection
tests,” IEEE transactions on Signal and Information Processing over
Networks, vol. 2, no. 1, pp. 29–48, 2016.

[18] C. A. Kerrache, A. Lakas, and N. Lagraa, “Detection of intelligent
malicious and selfish nodes in vanet using threshold adaptive control,”
in Electronic Devices, Systems and Applications (ICEDSA), 2016 5th
International Conference on. IEEE, 2016, pp. 1–4.

[19] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for dtn pro-
tocol evaluation,” in Proceedings of the 2nd international conference on
simulation tools and techniques. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2009, p. 55.

[20] F. Ekman, A. Keränen, J. Karvo, and J. Ott, “Working day movement
model,” in Proceedings of the 1st ACM SIGMOBILE workshop on
Mobility models. ACM, 2008, pp. 33–40.

[21] J. Zhang, “A survey on trust management for vanets,” in 2011 IEEE
International Conference on Advanced Information Networking and
Applications. IEEE, 2011, pp. 105–112.

[22] U. F. Minhas, J. Zhang, T. Tran, and R. Cohen, “Towards expanded trust
management for agents in vehicular ad-hoc networks,” International
Journal of Computational Intelligence: Theory and Practice (IJCITP),
vol. 5, no. 1, pp. 03–15, 2010.

[23] C. Chen, J. Zhang, R. Cohen, and P.-H. Ho, “A trust modeling framework
for message propagation and evaluation in vanets,” in Information
Technology Convergence and Services (ITCS), 2010 2nd International
Conference on. IEEE, 2010, pp. 1–8.

[24] W. Li and H. Song, “Art: An attack-resistant trust management scheme
for securing vehicular ad hoc networks,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 17, no. 4, pp. 960–969, 2016.

[25] X. Chen and L. Wang, “A cloud-based trust management framework for
vehicular social networks,” IEEE Access, vol. 5, pp. 2967–2980, 2017.

