-
Notifications
You must be signed in to change notification settings - Fork 173
/
Copy pathtest_auto_scan_lookup_table_v2.py
executable file
·93 lines (75 loc) · 2.63 KB
/
test_auto_scan_lookup_table_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest, BaseNet
from onnxbase import randtool
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import numpy as np
import unittest
import paddle
class Net(BaseNet):
"""
simple Net
"""
def forward(self, inputs, weight):
"""
forward
"""
x = paddle.nn.functional.embedding(
inputs,
weight,
padding_idx=self.config["padding_idx"],
sparse=self.config["sparse"])
return x
class TestKookuptablev2Convert(OPConvertAutoScanTest):
"""
api: paddle.nn.functional.embedding
OPset version: 7, 9, 15
"""
def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=10, max_value=30), min_size=2, max_size=2))
weight_shape = draw(
st.lists(
st.integers(
min_value=10, max_value=30), min_size=2, max_size=2))
def generator_data():
input_data = randtool("int", 0, weight_shape[0] - 1, input_shape)
return input_data
padding_idx = None
if draw(st.booleans()):
padding_idx = draw(
st.integers(
min_value=-1 * weight_shape[0] + 1,
max_value=weight_shape[0] - 1))
sparse = draw(st.booleans())
dtype1 = draw(st.sampled_from(["int32", "int64"]))
dtype = draw(st.sampled_from(["float32", "float64"]))
config = {
"op_names": ["lookup_table_v2"],
"test_data_shapes": [generator_data, weight_shape],
"test_data_types": [[dtype1], [dtype]],
"opset_version": [7, 9, 11, 15],
"input_spec_shape": [],
"padding_idx": padding_idx,
"sparse": sparse
}
models = Net(config)
return (config, models)
def test(self):
self.run_and_statis(max_examples=50)
if __name__ == "__main__":
unittest.main()