#!/usr/bin/env python # -*- coding: utf-8 -*- # # pct-speedtest.py: Speed test for the Python Cryptography Toolkit # # Written in 2009 by Dwayne C. Litzenberger # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== import time import os import sys from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP, PKCS1_v1_5 as RSAES_PKCS1_v1_5 from Crypto.Signature import PKCS1_PSS, PKCS1_v1_5 as RSASSA_PKCS1_v1_5 from Crypto.Cipher import (AES, ARC2, ARC4, Blowfish, CAST, DES3, DES, Salsa20, ChaCha20) from Crypto.Hash import (HMAC, MD2, MD4, MD5, SHA224, SHA256, SHA384, SHA512, CMAC, SHA3_224, SHA3_256, SHA3_384, SHA3_512, BLAKE2b, BLAKE2s) from Crypto.Random import get_random_bytes import Crypto.Util.Counter from Crypto.Util.number import bytes_to_long try: from Crypto.Hash import SHA1 except ImportError: # Maybe it's called SHA from Crypto.Hash import SHA as SHA1 try: from Crypto.Hash import RIPEMD160 except ImportError: # Maybe it's called RIPEMD try: from Crypto.Hash import RIPEMD as RIPEMD160 except ImportError: # Some builds of PyCrypto don't have the RIPEMD module RIPEMD160 = None try: import hashlib import hmac except ImportError: # Some builds/versions of Python don't have a hashlib module hashlib = hmac = None from Crypto.Random import random as pycrypto_random import random as stdlib_random class BLAKE2b_512(object): digest_size = 512 @staticmethod def new(data=None): return BLAKE2b.new(digest_bits=512, data=data) class BLAKE2s_256(object): digest_size = 256 @staticmethod def new(data=None): return BLAKE2s.new(digest_bits=256, data=data) class ChaCha20_old_style(object): @staticmethod def new(key, nonce): return ChaCha20.new(key=key, nonce=nonce) class ModeNotAvailable(ValueError): pass rng = get_random_bytes class Benchmark: def __init__(self): self.__random_data = None def random_keys(self, bytes, n=10**5): """Return random keys of the specified number of bytes. If this function has been called before with the same number of bytes, cached keys are used instead of randomly generating new ones. """ return self.random_blocks(bytes, n) def random_blocks(self, bytes_per_block, blocks): bytes = bytes_per_block * blocks data = self.random_data(bytes) retval = [] for i in range(blocks): p = i * bytes_per_block retval.append(data[p:p+bytes_per_block]) return retval def random_data(self, bytes): if self.__random_data is None: self.__random_data = self._random_bytes(bytes) return self.__random_data elif bytes == len(self.__random_data): return self.__random_data elif bytes < len(self.__random_data): return self.__random_data[:bytes] else: self.__random_data += self._random_bytes(bytes - len(self.__random_data)) return self.__random_data def _random_bytes(self, b): return os.urandom(b) def announce_start(self, test_name): sys.stdout.write("%s: " % (test_name,)) sys.stdout.flush() def announce_result(self, value, units): sys.stdout.write("%.2f %s\n" % (value, units)) sys.stdout.flush() def test_random_module(self, module_name, module): self.announce_start("%s.choice" % (module_name,)) alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" t0 = time.perf_counter() for i in range(5000): module.choice(alphabet) t = time.perf_counter() invocations_per_second = 5000 / (t - t0) self.announce_result(invocations_per_second, "invocations/sec") def test_pubkey_setup(self, pubkey_name, module, key_bytes): self.announce_start("%s pubkey setup" % (pubkey_name,)) keys = self.random_keys(key_bytes)[:5] t0 = time.perf_counter() for k in keys: module.generate(key_bytes*8) t = time.perf_counter() pubkey_setups_per_second = len(keys) / (t - t0) self.announce_result(pubkey_setups_per_second, "Keys/sec") def test_key_setup(self, cipher_name, module, key_bytes, params): self.generate_cipher(module, key_bytes, params) self.announce_start("%s key setup" % (cipher_name,)) for x in range(5000): t0 = time.perf_counter() self.generate_cipher(module, key_bytes, params) t = time.perf_counter() key_setups_per_second = 5000 / (t - t0) self.announce_result(key_setups_per_second/1000, "kKeys/sec") def test_encryption(self, cipher_name, module, key_bytes, params): self.announce_start("%s encryption" % (cipher_name,)) pt_size = 16384000 pt = rng(pt_size) cipher = self.generate_cipher(module, key_bytes, params) params_dict = dict([param.split('=') for param in params.split()]) # Perform encryption if params_dict.get('mode') == 'MODE_SIV': t0 = time.perf_counter() cipher.encrypt_and_digest(pt) t = time.perf_counter() else: t0 = time.perf_counter() cipher.encrypt(pt) t = time.perf_counter() encryption_speed = pt_size / (t - t0) self.announce_result(encryption_speed / 10**6, "MBps") def test_hash_small(self, hash_name, hash_constructor, digest_size): self.announce_start("%s (%d-byte inputs)" % (hash_name, digest_size)) blocks = self.random_blocks(digest_size, 10000) # Initialize hashes t0 = time.perf_counter() for b in blocks: hash_constructor(b).digest() t = time.perf_counter() hashes_per_second = len(blocks) / (t - t0) self.announce_result(hashes_per_second / 1000, "kHashes/sec") def test_hash_large(self, hash_name, hash_constructor, digest_size): self.announce_start("%s (single large input)" % (hash_name,)) blocks = self.random_blocks(16384, 10000) # Perform hashing t0 = time.perf_counter() h = hash_constructor() for b in blocks: h.update(b) h.digest() t = time.perf_counter() hash_speed = len(blocks) * len(blocks[0]) / (t - t0) self.announce_result(hash_speed / 10**6, "MBps") def test_hmac_small(self, mac_name, hmac_constructor, digestmod, digest_size): keys = iter(self.random_keys(digest_size)) if sys.version_info[0] == 2: mac_constructor = lambda data=None: hmac_constructor(keys.next(), data, digestmod) else: mac_constructor = lambda data=None: hmac_constructor(keys.__next__(), data, digestmod) self.test_hash_small(mac_name, mac_constructor, digest_size) def test_hmac_large(self, mac_name, hmac_constructor, digestmod, digest_size): key = self.random_keys(digest_size)[0] mac_constructor = lambda data=None: hmac_constructor(key, data, digestmod) self.test_hash_large(mac_name, mac_constructor, digest_size) def test_cmac_small(self, mac_name, cmac_constructor, ciphermod, key_size): keys = iter(self.random_keys(key_size)) if sys.version_info[0] == 2: mac_constructor = lambda data=None: cmac_constructor(keys.next(), data, ciphermod) else: mac_constructor = lambda data=None: cmac_constructor(keys.__next__(), data, ciphermod) self.test_hash_small(mac_name, mac_constructor, ciphermod.block_size) def test_cmac_large(self, mac_name, cmac_constructor, ciphermod, key_size): key = self.random_keys(key_size)[0] mac_constructor = lambda data=None: cmac_constructor(key, data, ciphermod) self.test_hash_large(mac_name, mac_constructor, ciphermod.block_size) def test_pkcs1_sign(self, scheme_name, scheme_constructor, hash_name, hash_constructor, digest_size): self.announce_start("%s signing %s (%d-byte inputs)" % (scheme_name, hash_name, digest_size)) # Make a key k = RSA.generate(2048) sigscheme = scheme_constructor(k) # Make some hashes blocks = self.random_blocks(digest_size, 50) hashes = [] for b in blocks: hashes.append(hash_constructor(b)) # Perform signing t0 = time.perf_counter() for h in hashes: sigscheme.sign(h) t = time.perf_counter() speed = len(hashes) / (t - t0) self.announce_result(speed, "sigs/sec") def test_pkcs1_verify(self, scheme_name, scheme_constructor, hash_name, hash_constructor, digest_size): self.announce_start("%s verification %s (%d-byte inputs)" % (scheme_name, hash_name, digest_size)) # Make a key k = RSA.generate(2048) sigscheme = scheme_constructor(k) # Make some hashes blocks = self.random_blocks(digest_size, 50) hashes = [] for b in blocks: hashes.append(hash_constructor(b)) # Make some signatures signatures = [] for h in hashes: signatures.append(sigscheme.sign(h)) # Double the list, to make timing better hashes = hashes + hashes signatures = signatures + signatures # Perform verification t0 = time.perf_counter() for h, s in zip(hashes, signatures): sigscheme.verify(h, s) t = time.perf_counter() speed = len(hashes) / (t - t0) self.announce_result(speed, "sigs/sec") def generate_cipher(self, module, key_size, params): params_dict = {} if params: params_dict = dict([x.split("=") for x in params.split(" ")]) gen_tuple = [] gen_dict = {} # 1st parameter (mandatory): key if params_dict.get('ks') == "x2": key = rng(2 * key_size) else: key = rng(key_size) gen_tuple.append(key) # 2nd parameter: mode mode = params_dict.get("mode") if mode: mode_value = getattr(module, mode, None) if mode_value is None: # Mode not available for this cipher raise ModeNotAvailable() gen_tuple.append(getattr(module, mode)) # 3rd parameter: IV/nonce iv_length = params_dict.get("iv") if iv_length is None: iv_length = params_dict.get("nonce") if iv_length: if iv_length == "bs": iv_length = module.block_size iv = rng(int(iv_length)) gen_tuple.append(iv) # Specific to CTR mode le = params_dict.get("little_endian") if le: if le == "True": le = True else: le = False # Remove iv from parameters gen_tuple = gen_tuple[:-1] ctr = Crypto.Util.Counter.new(module.block_size*8, initial_value=bytes_to_long(iv), little_endian=le, allow_wraparound=True) gen_dict['counter'] = ctr # Generate cipher return module.new(*gen_tuple, **gen_dict) def run(self): pubkey_specs = [ ("RSA(1024)", RSA, int(1024/8)), ("RSA(2048)", RSA, int(2048/8)), ("RSA(4096)", RSA, int(4096/8)), ] block_cipher_modes = [ # Mode name, key setup, parameters ("CBC", True, "mode=MODE_CBC iv=bs"), ("CFB-8", False, "mode=MODE_CFB iv=bs"), ("OFB", False, "mode=MODE_OFB iv=bs"), ("ECB", False, "mode=MODE_ECB"), ("CTR-LE", True, "mode=MODE_CTR iv=bs little_endian=True"), ("CTR-BE", False, "mode=MODE_CTR iv=bs little_endian=False"), ("OPENPGP", False, "mode=MODE_OPENPGP iv=bs"), ("CCM", True, "mode=MODE_CCM nonce=12"), ("GCM", True, "mode=MODE_GCM nonce=16"), ("EAX", True, "mode=MODE_EAX nonce=16"), ("SIV", True, "mode=MODE_SIV ks=x2 nonce=16"), ("OCB", True, "mode=MODE_OCB nonce=15"), ] block_specs = [ # Cipher name, module, key size ("DES", DES, 8), ("DES3", DES3, 24), ("AES128", AES, 16), ("AES192", AES, 24), ("AES256", AES, 32), ("Blowfish(256)", Blowfish, 32), ("CAST(128)", CAST, 16), ("ARC2(128)", ARC2, 16), ] stream_specs = [ # Cipher name, module, key size, nonce size ("ARC4(128)", ARC4, 16, 0), ("Salsa20(16)", Salsa20, 16, 8), ("Salsa20(32)", Salsa20, 32, 8), ("ChaCha20", ChaCha20_old_style, 32, 8), ] hash_specs = [ ("MD2", MD2), ("MD4", MD4), ("MD5", MD5), ("SHA1", SHA1), ("SHA224", SHA224), ("SHA256", SHA256), ("SHA384", SHA384), ("SHA512", SHA512), ("SHA3_224", SHA3_224), ("SHA3_256", SHA3_256), ("SHA3_384", SHA3_384), ("SHA3_512", SHA3_512), ("BLAKE2b", BLAKE2b_512), ("BLAKE2s", BLAKE2s_256), ] if RIPEMD160 is not None: hash_specs += [("RIPEMD160", RIPEMD160)] hashlib_specs = [] if hashlib is not None: if hasattr(hashlib, 'md5'): hashlib_specs.append(("hashlib.md5", hashlib.md5)) if hasattr(hashlib, 'sha1'): hashlib_specs.append(("hashlib.sha1", hashlib.sha1)) if hasattr(hashlib, 'sha224'): hashlib_specs.append(("hashlib.sha224", hashlib.sha224)) if hasattr(hashlib, 'sha256'): hashlib_specs.append(("hashlib.sha256", hashlib.sha256)) if hasattr(hashlib, 'sha384'): hashlib_specs.append(("hashlib.sha384", hashlib.sha384)) if hasattr(hashlib, 'sha512'): hashlib_specs.append(("hashlib.sha512", hashlib.sha512)) # stdlib random self.test_random_module("stdlib random", stdlib_random) # Crypto.Random.random self.test_random_module("Crypto.Random.random", pycrypto_random) # Crypto.PublicKey for pubkey_name, module, key_bytes in pubkey_specs: self.test_pubkey_setup(pubkey_name, module, key_bytes) # Crypto.Cipher (block ciphers) for cipher_name, module, key_bytes in block_specs: # Benchmark each cipher in each of the various modes (CBC, etc) for mode_name, test_ks, params in block_cipher_modes: mode_text = "%s-%s" % (cipher_name, mode_name) try: if test_ks: self.test_key_setup(mode_text, module, key_bytes, params) self.test_encryption(mode_text, module, key_bytes, params) except ModeNotAvailable as e: pass # Crypto.Cipher (stream ciphers) for cipher_name, module, key_bytes, nonce_bytes in stream_specs: params = "" if nonce_bytes: params = "nonce=" + str(nonce_bytes) self.test_key_setup(cipher_name, module, key_bytes, params) self.test_encryption(cipher_name, module, key_bytes, params) # Crypto.Hash for hash_name, module in hash_specs: self.test_hash_small(hash_name, module.new, module.digest_size) self.test_hash_large(hash_name, module.new, module.digest_size) # standard hashlib for hash_name, func in hashlib_specs: self.test_hash_small(hash_name, func, func().digest_size) self.test_hash_large(hash_name, func, func().digest_size) # PyCrypto HMAC for hash_name, module in hash_specs: if not hasattr(module, "block_size"): continue self.test_hmac_small("HMAC-"+hash_name, HMAC.new, module, module.digest_size) self.test_hmac_large("HMAC-"+hash_name, HMAC.new, module, module.digest_size) # standard hmac + hashlib for hash_name, func in hashlib_specs: if not hasattr(module, "block_size"): continue self.test_hmac_small("hmac+"+hash_name, hmac.HMAC, func, func().digest_size) self.test_hmac_large("hmac+"+hash_name, hmac.HMAC, func, func().digest_size) # CMAC for cipher_name, module, key_size in (("AES128", AES, 16),): self.test_cmac_small(cipher_name+"-CMAC", CMAC.new, module, key_size) self.test_cmac_large(cipher_name+"-CMAC", CMAC.new, module, key_size) # PKCS1_v1_5 (sign) + Crypto.Hash for hash_name, module in hash_specs: self.test_pkcs1_sign("PKCS#1-v1.5", RSASSA_PKCS1_v1_5.new, hash_name, module.new, module.digest_size) # PKCS1_PSS (sign) + Crypto.Hash for hash_name, module in hash_specs: self.test_pkcs1_sign("PKCS#1-PSS", PKCS1_PSS.new, hash_name, module.new, module.digest_size) # PKCS1_v1_5 (verify) + Crypto.Hash for hash_name, module in hash_specs: self.test_pkcs1_verify("PKCS#1-v1.5", RSASSA_PKCS1_v1_5.new, hash_name, module.new, module.digest_size) # PKCS1_PSS (verify) + Crypto.Hash for hash_name, module in hash_specs: self.test_pkcs1_verify("PKCS#1-PSS", PKCS1_PSS.new, hash_name, module.new, module.digest_size) if __name__ == '__main__': Benchmark().run() # vim:set ts=4 sw=4 sts=4 expandtab: