-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib.rs
277 lines (230 loc) · 8.42 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#[macro_use] extern crate etrace;
use etrace::Error;
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum State{ Waiting, Ready, Consumed, Canceled }
/// The futures inner state
struct Inner<T, U> {
payload: std::sync::Mutex<(State, Option<T>)>,
cond_var: std::sync::Condvar,
shared_state: std::sync::Mutex<U>,
cancel_on_drop: std::sync::atomic::AtomicBool
}
unsafe impl<T, U> Sync for Inner<T, U> {}
pub struct Future<T, U = ()>(std::sync::Arc<Inner<T, U>>);
impl<T, U> Future<T, U> {
/// Creates a new `Future<T, U>` with `shared_state` as shared-state
pub fn with_state(shared_state: U) -> Self {
Future(std::sync::Arc::new(Inner {
payload: std::sync::Mutex::new((State::Waiting, None)),
cond_var: std::sync::Condvar::new(),
shared_state: std::sync::Mutex::new(shared_state),
cancel_on_drop: std::sync::atomic::AtomicBool::new(true)
}))
}
/// Sets the future
pub fn set(&self, result: T) -> Result<(), Error<State>> {
// Check if the future can be set (is `State::Waiting`)
let mut payload = self.0.payload.lock().unwrap();
if payload.0 != State::Waiting { throw_err!(payload.0) }
// Set result
*payload = (State::Ready, Some(result));
self.0.cond_var.notify_all();
Ok(())
}
/// Cancels (poisons) the future
///
/// This is useful to indicate that the future is obsolete and should not be `set` anymore
pub fn cancel(&self) {
let mut payload = self.0.payload.lock().unwrap();
// Check if the payload is still cancelable
if payload.0 == State::Waiting {
payload.0 = State::Canceled;
self.0.cond_var.notify_all();
}
}
/// Returns the future's state
pub fn get_state(&self) -> State {
self.0.payload.lock().unwrap().0
}
/// Checks if the future is still waiting or has been set/canceled
pub fn is_waiting(&self) -> bool {
self.get_state() == State::Waiting
}
/// Tries to get the future's result
///
/// If the future is ready, it is consumed and `T` is returned;
/// if the future is not ready, `Error::InvalidState(State)` is returned
pub fn try_get(&self) -> Result<T, Error<State>> {
// Lock this future and check if it has a result (is `State::Ready`)
let payload = self.0.payload.lock().unwrap();
Ok(try_err!(Future::<T, U>::extract_payload(payload)))
}
/// Tries to get the future's result
///
/// If the future is ready or or becomes ready before the timeout occurres, it is consumed
/// and `T` is returned; if the future is not ready, `Error::InvalidState(State)` is returned
pub fn try_get_timeout(&self, timeout: std::time::Duration) -> Result<T, Error<State>> {
let timeout_point = std::time::Instant::now() + timeout;
// Wait for condvar until the state is not `State::Waiting` anymore or the timeout has occurred
let mut payload = self.0.payload.lock().unwrap();
while payload.0 == State::Waiting && std::time::Instant::now() < timeout_point {
payload = self.0.cond_var.wait_timeout(payload, time_remaining(timeout_point)).unwrap().0;
}
Ok(try_err!(Future::<T, U>::extract_payload(payload)))
}
/// Gets the future's result
///
/// __Warning: this function will block until a result becomes available__
pub fn get(&self) -> Result<T, Error<State>> {
// Wait for condvar until the state is not `State::Waiting` anymore
let mut payload = self.0.payload.lock().unwrap();
while payload.0 == State::Waiting { payload = self.0.cond_var.wait(payload).unwrap() }
Ok(try_err!(Future::<T, U>::extract_payload(payload)))
}
/// Get a clone of the current shared state
pub fn get_shared_state(&self) -> U where U: Clone {
self.0.shared_state.lock().unwrap().clone()
}
/// Replace the current shared state
pub fn set_shared_state(&self, shared_state: U) {
*self.0.shared_state.lock().unwrap() = shared_state
}
/// Provides exclusive access to the shared state within `modifier` until `modifier` returns
pub fn access_shared_state<F: FnOnce(&mut U)>(&self, modifier: F) {
let mut shared_state_lock = self.0.shared_state.lock().unwrap();
modifier(&mut *shared_state_lock);
}
/// Provides exclusive access to the shared state within `modifier` until `modifier` returns
pub fn access_shared_state_param<V, F: FnOnce(&mut U, V)>(&self, modifier: F, parameter: V) {
let mut shared_state_lock = self.0.shared_state.lock().unwrap();
modifier(&mut *shared_state_lock, parameter);
}
/// Detaches the future so it won't be canceled if there is only one instance left
///
/// Useful if you either don't want that your future is ever canceled or if there's always only
/// one instance (e.g. if you wrap it into a reference-counting container)
pub fn detach(&self) {
self.0.cancel_on_drop.store(false, std::sync::atomic::Ordering::Relaxed)
}
/// Internal helper to validate/update the future's state and get the payload
fn extract_payload(mut payload: std::sync::MutexGuard<(State, Option<T>)>) -> Result<T, Error<State>> {
// Validate state
if payload.0 == State::Ready {
// Update state and return the payload
payload.0 = State::Consumed;
// If the payload cannot be taken, we'll fall to `throw_err!(payload.0)` where `payload.0 == State::Consumed`
if let Some(payload) = payload.1.take() { return Ok(payload) }
}
throw_err!(payload.0)
}
}
impl<T> Future<T, ()> {
pub fn new() -> Self {
Future::with_state(())
}
}
impl<T, U> Default for Future<T, U> where U: Default {
fn default() -> Self {
Future::with_state(U::default())
}
}
impl<T, U> Drop for Future<T, U> {
fn drop(&mut self) {
if std::sync::Arc::strong_count(&self.0) <= 2 && self.0.cancel_on_drop.load(std::sync::atomic::Ordering::Relaxed) { self.cancel() }
}
}
impl<T, U> Clone for Future<T, U> {
fn clone(&self) -> Self {
Future(self.0.clone())
}
}
unsafe impl<T, U> Send for Future<T, U> {}
unsafe impl<T, U> Sync for Future<T, U> {}
/// Computes the remaining time underflow-safe
pub fn time_remaining(timeout_point: std::time::Instant) -> std::time::Duration {
let now = std::time::Instant::now();
if now > timeout_point { std::time::Duration::default() } else { timeout_point - now }
}
/// Creates a future for `job` and runs `job`. The result of `job` will be set as result into the
/// future. The parameter passed to `job` is a function that returns if the future is still waiting
/// so that `job` can check for cancellation.
pub fn async_with_state<T: 'static, U: 'static, F: FnOnce(Future<T, U>) + Send + 'static>(job: F, shared_state: U) -> Future<T, U> {
use std::clone::Clone;
// Create future and spawn job
let future = Future::with_state(shared_state);
let _future = future.clone();
std::thread::spawn(move || job(_future));
future
}
/// Creates a future for `job` and runs `job`. The result of `job` will be set as result into the
/// future. The parameter passed to `job` is a function that returns if the future is still waiting
/// so that `job` can check for cancellation.
pub fn async<T: 'static, F: FnOnce(Future<T, ()>) + Send + 'static>(job: F) -> Future<T, ()> {
async_with_state(job, ())
}
/// Sets `$result` as the `$future`'s result and returns
#[macro_export]
macro_rules! job_return {
($future:expr, $result:expr) => ({
let _ = $future.set($result);
return
})
}
/// Cancels `$future` and returns
#[macro_export]
macro_rules! job_die {
($future:expr) => ({
$future.cancel();
return
})
}
#[cfg(test)]
mod test {
use std;
use super::{ Future, State, async };
#[test]
fn double_set_err() {
let fut = Future::<u8>::new();
fut.set(7).unwrap();
assert_eq!(fut.set(77).unwrap_err().kind, State::Ready)
}
#[test]
fn cancel_set_err() {
let fut = Future::<u8>::new();
fut.cancel();
assert_eq!(fut.set(7).unwrap_err().kind, State::Canceled)
}
#[test]
fn drop_is_canceled() {
let fut = Future::<u8>::new();
assert_eq!(fut.get_state(), State::Waiting);
{
let _fut = fut.clone();
std::thread::sleep(std::time::Duration::from_secs(2));
}
assert_eq!(fut.get_state(), State::Canceled)
}
#[test]
fn cancel_get_err() {
let fut = async(|fut: Future<u8>| {
std::thread::sleep(std::time::Duration::from_secs(4));
job_die!(fut)
});
assert_eq!(fut.get().unwrap_err().kind, State::Canceled)
}
#[test]
fn is_ready_and_get() {
let fut = async(|fut: Future<u8>| {
std::thread::sleep(std::time::Duration::from_secs(4));
fut.set(7).unwrap();
});
assert_eq!(fut.get_state(), State::Waiting);
// Create and drop future
{
let _fut = fut.clone();
std::thread::sleep(std::time::Duration::from_secs(7));
assert_eq!(_fut.get_state(), State::Ready);
}
assert_eq!(fut.get().unwrap(), 7);
}
}