-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathreduce.jl
454 lines (371 loc) · 13.5 KB
/
reduce.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
"""
foldxt(step, xf, reducible; [init, simd, basesize, stoppable, nestlevel]) :: T
e**X**tended **t**hreaded fold (reduce). This is a multi-threaded
`reduce` based on extended fold protocol defined in Transducers.jl.
The "bottom" reduction function `step(::T, ::T) :: T` must be
associative and `init` must be its identity element.
Transducers composing `xf` must be stateless (e.g., [`Map`](@ref),
[`Filter`](@ref), [`Cat`](@ref), etc.) except for [`ScanEmit`](@ref).
Note that [`Scan`](@ref) is not supported (although possible in
theory). Early termination requires Julia ≥ 1.3.
Use [`tcollect`](@ref) or [`tcopy`](@ref) to collect results into a
container.
See also: [Parallel processing tutorial](@ref tutorial-parallel),
[`foldxl`](@ref), [`foldxd`](@ref).
# Keyword Arguments
$_THREADED_EX_OPTS_DOCS
- For other keyword arguments, see [`foldl`](@ref).
!!! compat "Transducers.jl 0.4.23"
Keyword option `stoppable` requires at least Transducers.jl 0.4.23.
# Examples
```jldoctest
julia> using Transducers
julia> foldxt(+, 1:3 |> Map(exp) |> Map(log))
6.0
julia> using BangBang: append!!
julia> foldxt(append!!, Map(x -> 1:x), 1:2; basesize=1, init=Union{}[])
3-element Vector{Int64}:
1
1
2
julia> 1:5 |> Filter(isodd) |> foldxt(+)
9
julia> foldxt(TeeRF(min, max), [5, 2, 6, 8, 3])
(2, 8)
```
"""
foldxt
const _MAPREDUCE_DEPWARN = (
"`mapreduce(::Transducer, rf, itr)` is deprecated. " *
" Use `foldxt(rf, ::Transducer, itr)` if you do not need to call single-argument" *
" `rf` on `complete`." *
" Use `foldxt(whencomplete(rf, rf), ::Transducer, itr)` to call the" *
" single-argument method of `rf` on complete."
)
"""
mapreduce(xf, step, reducible; init, simd)
!!! warning
$_MAPREDUCE_DEPWARN
Like [`foldxt`](@ref) but `step` is _not_ automatically wrapped by
[`Completing`](@ref).
"""
Base.mapreduce
"""
Transducers.issmall(reducible, basesize) :: Bool
Check if `reducible` collection is considered small compared to
`basesize` (an integer). Fold functions such as [`foldxt`](@ref)
switches to sequential `__foldl__` when `issmall` returns `true`.
Default implementation is `amount(reducible) <= basesize`.
"""
issmall
function transduce_assoc(
xform::Transducer,
step::F,
init,
coll0;
simd::SIMDFlag = Val(false),
basesize::Union{Integer,Nothing} = nothing,
stoppable::Union{Bool,Nothing} = nothing,
nestlevel::Union{Val,Integer,Nothing} = nothing,
) where {F}
rf0 = _reducingfunction(xform, step; init = init)
rf, coll = retransform(rf0, coll0)
if nestlevel !== nothing
if basesize === nothing
throw(ArgumentError("`nestlevel` requires `basesize`"))
end
if has(rf, Union{Cat,TCat})
rf = use_threads_for_inner_cats(rf, basesize, nestlevel)
basesize = 1
end
end
if stoppable === nothing
stoppable = _might_return_reduced(rf, init, coll)
end
acc = @return_if_reduced _transduce_assoc_nocomplete(
maybe_usesimd(rf, simd),
init,
coll,
basesize === nothing ? amount(coll) ÷ Threads.nthreads() : basesize,
stoppable ? CancellableDACContext() : NoopDACContext(),
)
result = complete(rf, acc)
if unreduced(result) isa DefaultInitOf
throw(EmptyResultError(rf))
# See how `transduce(rf, init, coll)` is implemented in ./processes.jl
end
return result
end
function _transduce_assoc_nocomplete(
rf::F,
init,
coll,
basesize,
ctx::DACContext = NoopDACContext(),
) where {F}
reducible = SizedReducible(coll, basesize)
return _reduce(ctx, rf, init, reducible)
end
function _reduce(ctx, rf::R, init::I, reducible::Reducible) where {R,I}
if should_abort(ctx)
return init
end
if issmall(reducible)
acc = _reduce_basecase(rf, init, reducible)
if acc isa Reduced
cancel!(ctx)
end
return acc
else
left, right = _halve(reducible)
fg, bg = splitcontext(ctx)
task = @spawn _reduce(bg, rf, init, right)
a0 = _reduce(fg, rf, init, left)
b0 = fetch(task)
a = @return_if_reduced a0
should_abort(ctx) && return a # slight optimization
b0 isa Reduced && return combine_right_reduced(rf, a, b0)
return combine(rf, a, b0)
end
end
combine_right_reduced(rf, a, b0::Reduced) =
reduced(combine(_realbottomrf(rf), a, unreduced(b0)))
# TODO: make this the default behavior of `combine`
function combine_reduced(rf, a, b)
a isa Reduced && return a
b isa Reduced && return combine_right_reduced(rf, a, b)
return combine(rf, a, b)
end
function _reduce_threads_for(rf, init, reducible::SizedReducible{<:AbstractArray})
arr = reducible.reducible
basesize = reducible.basesize
nthreads = max(
1,
basesize <= 1 ? length(arr) : length(arr) ÷ basesize
)
if nthreads == 1
return foldl_basecase(rf, start(rf, init), arr)
else
w = length(arr) ÷ nthreads
results = Vector{Any}(undef, nthreads)
Threads.@threads for i in 1:nthreads
if i == nthreads
chunk = @view arr[(i - 1) * w + 1:end]
else
chunk = @view arr[(i - 1) * w + 1:i * w]
end
results[i] = foldl_basecase(rf, start(rf, init), chunk)
end
# It can be done in `log2(n)` for loops but it's not clear if
# `combine` is compute-intensive enough so that launching
# threads is worth enough. Let's merge the `results`
# sequentially for now.
return combine_all(rf, results)
end
end
function combine_all(rf, results)
step = combine_step(rf)
return transduce(ensurerf(Completing(step)), Init(step), results)
end
combine_step(rf) =
asmonoid() do a0, b0
a = @return_if_reduced a0
b0 isa Reduced && return combine_right_reduced(rf, a, b0)
return combine(rf, a, b0)
end
# The output of `foldxt` is correct regardless of the value of
# `stoppable`. Thus, we can use `return_type` here purely for
# optimization.
_might_return_reduced(rf, init, coll) =
Base.typeintersect(
Core.Compiler.return_type(
__reduce_dummy, # simulate the output type of `_reduce`
typeof((rf, init, SizedReducible(coll, 1))),
),
Reduced,
) !== Union{}
_reduce_dummy(rf, init, coll) =
__reduce_dummy(rf, init, SizedReducible(coll, 1))
function __reduce_dummy(rf, init, reducible)
if issmall(reducible)
return _reduce_basecase(rf, init, reducible.reducible)
else
left, right = _halve(reducible)
a = __reduce_dummy(rf, init, left)
b = __reduce_dummy(rf, init, right)
a isa Reduced && return a
b isa Reduced && return combine_right_reduced(rf, a, b)
return combine(rf, a, b)
end
end
foldxt(step::F, xform::Transducer, itr; init = DefaultInit, kwargs...) where {F} =
unreduced(transduce_assoc(xform, Completing(step), init, itr; kwargs...))
foldxt(step::F, foldable; kwargs...) where {F} =
foldxt(step, extract_transducer(foldable)...; kwargs...)
foldxt(rf; kw...) = itr -> foldxt(rf, itr; kw...)
"""
tcopy(xf::Transducer, T, reducible; basesize) :: Union{T, Empty{T}}
tcopy(xf::Transducer, reducible::T; basesize) :: Union{T, Empty{T}}
tcopy([T,] itr; basesize) :: Union{T, Empty{T}}
Thread-based parallel version of [`copy`](@ref).
Keyword arguments are passed to [`foldxt`](@ref).
See also: [Parallel processing tutorial](@ref tutorial-parallel)
(especially [Example: parallel `collect`](@ref tutorial-parallel-collect)).
!!! compat "Transducers.jl 0.4.5"
New in version 0.4.5.
!!! compat "Transducers.jl 0.4.8"
`tcopy` now accepts iterator comprehensions and eductions.
# Examples
```jldoctest
julia> using Transducers
julia> tcopy(Map(x -> x => x^2), Dict, 2:2)
Dict{Int64, Int64} with 1 entry:
2 => 4
julia> using TypedTables
julia> @assert tcopy(Map(x -> (a=x,)), Table, 1:1) == Table(a=[1])
julia> using StructArrays
julia> @assert tcopy(Map(x -> (a=x,)), StructVector, 1:1) == StructVector(a=[1])
```
`tcopy` works with iterator comprehensions and eductions (unlike
[`copy`](@ref), there is no need for manual conversion with
[`eduction`](@ref)):
```jldoctest; setup = :(using Transducers, StructArrays, DataFrames)
julia> table = StructVector(a = [1, 2, 3], b = [5, 6, 7]);
julia> @assert tcopy(
(A = row.a + 1, B = row.b - 1) for row in table if isodd(row.a)
) == StructVector(A = [2, 4], B = [4, 6])
julia> @assert tcopy(
DataFrame,
(A = row.a + 1, B = row.b - 1) for row in table if isodd(row.a)
) == DataFrame(A = [2, 4], B = [4, 6])
julia> @assert table |>
Filter(row -> isodd(row.a)) |> Map(row -> (A = row.a + 1, B = row.b - 1)) |>
tcopy == StructVector(A = [2, 4], B = [4, 6])
```
If you have [`Cat`](@ref) or [`MapCat`](@ref) at the end of the
transducer, consider using [`foldxt`](@ref) directly:
```jldoctest
julia> using Transducers
using DataFrames
julia> @assert tcopy(
DataFrame,
1:2 |> Map(x -> DataFrame(a = [x])) |> MapCat(eachrow);
basesize = 1,
) == DataFrame(a = [1, 2])
julia> using BangBang: Empty, append!!
julia> @assert foldxt(
append!!,
Map(x -> DataFrame(a = [x])),
1:2;
basesize = 1,
# init = Empty(DataFrame),
) == DataFrame(a = [1, 2])
```
Note that above snippet assumes that it is OK to mutate the dataframe
returned by the transducer. Use `init = Empty(DataFrame)` if this is
not the case.
This approach of using `foldxt` works with other containers; e.g.,
with `TypedTables.Table`:
```jldoctest; setup = :(using Transducers)
julia> using TypedTables
julia> @assert foldxt(
append!!,
Map(x -> Table(a = [x])),
1:2;
basesize = 1,
# init = Empty(Table),
) == Table(a = [1, 2])
```
"""
tcopy(xf::XF, T, reducible::R; kwargs...) where {XF, R} = _tcopy(xf, T, reducible, OutputSize(XF), Base.IteratorSize(R); kwargs...)
_tcopy(xf, T, reducible, ::Any, ::Any; kwargs...) = foldxt(append!!, Map(SingletonVector) ∘ xf, reducible; init = Empty(T), kwargs...)
function _tcopy(xf, ::Type{T}, reducible, ::SizeStable, ::Union{Base.HasLength, Base.HasShape};
basesize=max(amount(reducible) ÷ Threads.nthreads(), 1), kwargs...) where {T <: Array}
chunks = split_into_chunks(reducible, basesize)
foldxt(append!!, Map(x -> copy(xf, T, x)), chunks; init = Empty(T), kwargs...)
end
# This can't be collect(Partition(sz), col) because of /~https://github.com/JuliaFolds/Transducers.jl/issues/554
function split_into_chunks(coll, sz)
collect(Iterators.partition(coll, sz))
end
tcopy(xf, reducible; kwargs...) = tcopy(xf, _materializer(reducible), reducible; kwargs...)
function tcopy(::Type{T}, itr; kwargs...) where {T}
xf, foldable = extract_transducer(itr)
return tcopy(xf, T, foldable; kwargs...)
end
function tcopy(itr; kwargs...)
xf, foldable = extract_transducer(itr)
return tcopy(xf, foldable; kwargs...)
end
tcopy(xf, T::Type{<:AbstractSet}, reducible; kwargs...) =
foldxt(union!!, Map(SingletonVector) ∘ xf, reducible; init = Empty(T), kwargs...)
function tcopy(
::typeof(Map(identity)),
T::Type{<:AbstractSet},
array::AbstractArray;
basesize::Integer = max(1, length(array) ÷ Threads.nthreads()),
kwargs...,
)
@argcheck basesize >= 1
return foldxt(
union!!,
Map(identity),
Iterators.partition(array, basesize);
init = Empty(T),
basesize = 1,
kwargs...,
)
end
"""
tcollect(xf::Transducer, reducible; basesize) :: Union{Vector, Empty{Vector}}
tcollect(itr; basesize) :: Union{Vector, Empty{Vector}}
Thread-based parallel version of [`collect`](@ref).
This is just a short-hand notation of `tcopy(xf, Vector, reducible)`.
Use [`tcopy`](@ref) to get a container other than a `Vector`.
See also: [Parallel processing tutorial](@ref tutorial-parallel)
(especially [Example: parallel `collect`](@ref tutorial-parallel-collect)).
!!! compat "Transducers.jl 0.4.5"
New in version 0.4.5.
!!! compat "Transducers.jl 0.4.8"
`tcollect` now accepts iterator comprehensions and eductions.
# Examples
```jldoctest
julia> using Transducers
julia> tcollect(Map(x -> x^2), 1:2)
2-element Vector{Int64}:
1
4
julia> tcollect(x^2 for x in 1:2)
2-element Vector{Int64}:
1
4
```
"""
tcollect(xf, reducible; kwargs...) = tcopy(xf, Vector, reducible; kwargs...)
tcollect(itr; kwargs...) = tcollect(extract_transducer(itr)...; kwargs...)
verify_nestlevel(lvl::Val{:inf}) = lvl
verify_nestlevel(lvl::Integer) = verify_nestlevel(Val(Int(lvl)))
function verify_nestlevel(::Val{n}) where {n}
n isa Integer ||
throw(ArgumentError("`nestlevel` must be an integer, `Val` of `Int`, or `Val(:inf)`"))
lvl = Int(n)
lvl > 0 || throw(ArgumentError("`nestlevel` must be positive"))
return Val(lvl)
end
_dec_lvl(lvl::Val{:inf}) = lvl
_dec_lvl(::Val{n}) where {n} = Val(n - 1)
use_threads_for_inner_cats(rf, basesize, nestlevel) =
cats_to_tcats(rf, TCat(basesize), verify_nestlevel(nestlevel))
# TODO: handle `TeeRF` etc?
cats_to_tcats(rf::R_, innermost_tcat, lvl::Val) =
Reduction(xform(rf), cats_to_tcats(inner(rf), innermost_tcat, lvl))
cats_to_tcats(rf::R_{Union{Cat,TCat}}, innermost_tcat, lvl::Val) =
if has(inner(rf), Union{Cat,TCat})
if lvl isa Val{1}
setxform(rf, innermost_tcat)
else
Reduction(TCat(1), cats_to_tcats(inner(rf), innermost_tcat, _dec_lvl(lvl)))
end
else
setxform(rf, innermost_tcat)
end