

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

1 / 21

DRC/LVS Development
Best Practices
Learning from GF180 PDK optimization

Matthias Köfferlein, https://www.klayout.org

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

2 / 21

This is not a Banana!

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

3 / 21

The GF180 DRC/LVS
● Project link (efabless fork)

https://github.com/efabless/globalfoundries-pdk-libs-gf180mcu_fd_pv

● Highlights
– Nice Python wrapper
– Large test suite
– Modular
– Clean structure
– References to design manual

● Troubles
– Performance issue (>10h runtime, >40G memory for

medium size layout with 410k stdcells)

https://github.com/efabless/globalfoundries-pdk-libs-gf180mcu_fd_pv

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

4 / 21

Performance Killers
● KLayout bug (garbage collector disabled)

– Pile-up of memory for intermediate results
● Use of flat mode

– little trust in the other modes?
● Inefficient implementation of certain rules

● After optimization (large test case)
– speed 10h → 1h
– memory 40G → <4G
– runs on single CPU and

consumer hardware

Fixed ✔

Fixed ✔

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

5 / 21

Debugging Techniques
Recent features make debugging easier
profile
Used at the beginning of a script
will print the commands by CPU
time and process memory delta

new_target
Allows sending intermediate
results to a separate layout file for
easy inspection

Memory returned to system
by garbage collector

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

6 / 21

Choice of Modes
flat (default)
Simple, predictable,
single CPU, vanilla
implementation
Memory proportional to
objects
Only for small
designs or quick
checks

tiled
Operations work on tiles
Parallelization along
tiles, good scaling
Heap allocation for
single tiles only
Results / intermediate
layers are flat → large
memory footprint
possible
Range-limited (border
specification needed)
Useful for flat layouts

deep
Hierarchical processing
where possible (local
computation done once
per cell)
Can be very fast, but also
slow (skillful use reqd)
Results / intermediate
layers are hierarchical →
small memory footprint
possible
Scales with “cores 0.5”
Preferred solution for
big hierarchical layouts

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

7 / 21

Deep Mode in a Nutshell

compute(A, B, OP, dist):

 for subject in shapes of A:
 intruders = shapes of B with distance to subject < dist
 results = OP.compute(subject, intruders)
 store results

Hierarchical treatment
● Compute cell neighborhoods (“contexts”)
● Collect intruders per context (→ minimum set of configurations)
● For the results, keep common core inside cell,

propagate specific results to parent cells

A OP B
“Visitor pattern”

*) OP = “local”

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

8 / 21

Deep Mode Best Practices
● Watch for hierarchy degradation

– Results my be propagated, destroying hierarchy over time

● Complexity determined by first operand
– Less shapes, less work
– The more hierarchical, the better
– First operand is able to “pull” B shapes down in hierarchy

● Beware of pre-merge
– Not all operations are “local” and need pre-merge - e.g. “interact”
– Pre-merge will form large polygons potentially higher up in the hierarchy →

spoils hierarchical performance

For details see: https://www.klayout.de/drc_function_internals.html#drc_function_details

Some

https://www.klayout.de/drc_function_internals.html#drc_function_details

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

9 / 21

Klayout is not Calibre!

And this is not a Banana!

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

10 / 21

Klayout is not Calibre!
● Immediate execution vs. operation graph

– Layer == Variable, Value == Layer Geometry
– Memory allocation == variable lifetime → use “forget” or reset

variable
– Intermediate results allocate memory too (will be cleaned up by GC)

d = a – (b & c)

– No optimization of dead execution branches
c = empty & a.interacting(b)

– No selection of input layers based on what is needed
– No parallelization
– Pro: allows loops, conditionals and direct per-shape manipulations

● No hierarchy manipulation
– Except for variant formation for non-isotropic transformations and

grid snap operations

Intermediate result – avoid duplication of expressions

Computed even though not
needed

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

11 / 21

Pitfalls we have seen
● “drc” function is more generic, but not better than simple

equivalents
a.drc(space < 0.2.um) a.space(0.2.um)

● Edge “width” != polygon “width”
– Edge “width” only refers to relative orientation of the edges, but treats edges

separately (→ potential long-distance interactions)
– Polygon “width” is a single-polygon operation on pre-merged polygons
a.edges.width(0.5.um) a.width(0.5)

● “+” (join) may be better than “|” (or)
– “+” simply collects the shapes, “|” merges the shapes → this may give large

polygons high up in the hierarchy and eats CPU time
– For “local” operations, fragmented input is better → use “+”

Same result, but performance is better with “space”

Similar results, but left side is better with large clusters of
polygons while right side is better with large distances

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

12 / 21

“+” (join) vs. “|” (or)
poly.or(comp)

Gives a single giant polygon over memory area

poly + comp

Leaves the original polygons
in the hierarchy
Executes much faster on
operations not doing pre-
merge

✔

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

13 / 21

Optimization Example I
Rule: Max transistor channel length <= 20 µm
Initial implementation (concept):
channel_edges = poly.edges & comp
channel_not_too_wide = channel_edges.width(20.001.um)
error = channel_edges -
 channel_edges.interacting(channel_not_too_wide.edges)

compcompcomp

poly

channel_edges

Observation
slow execution on
standard logic layouts
Even worse in deep mode

Channel length

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

14 / 21

Analysis
channel_edges = poly.edges & comp
channel_not_too_wide = channel_edges.width(20.001.um)
error = channel_edges -
 channel_edges.interacting(channel_not_too_wide.edges)

! Explanation: edge “width” captures many
interactions due to the long range

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

15 / 21

Optimized Version
Rewriting to polygon width check → range is limited to polygon area
channel_edges = poly.edges & comp
gate = comp & poly
gate_not_too_wide = gate.width(20.um + 1.dbu,
 projection)
error = channel_edges - gate_not_too_wide.edges

compcompcomp

poly

channel_edges

Effect
Execution time drops
from 50s (medium size
sample) to basically
nothing

Both directions checked, but
only this one matters ✔

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

16 / 21

Optimization Example II
Rule: NMOS distance to p tap <= 20µm
Initial implementation (concept):
nmos = ncomp.outside(nwell)
ptap = pcomp.outside(nwell)
error = ptap.not_interacting(nmos.sized(20.um))

ptap

Observation
slow execution on
standard logic layouts
Even worse in deep mode

!
nmos.sized(20.um)

(many of them)

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

17 / 21

Optimized Version
Turning around the check optimizes it
Explanation
● ptap has less shapes than nmos
● ptap is localized → pre-merge of “sized” does not spoil the hierachy and is

quick.
Effect: “nmos.not_interacting(…)” has more primary shapes, but has to deal
with fewer intruder shapes
nmos = ncomp.outside(nwell)
ptap = pcomp.outside(nwell)
error = nmos.not_interacting(ptap.sized(20.um))

Effect
Execution time
drops by a factor 10 ✔

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

18 / 21

Wrap-up
● Prefer deep mode
● Keep in mind the basic concepts of deep mode

– First argument should have low complexity
– Beware of large regions formed by pre-merge
– Avoid hierarchy degradation

● Use profiling, focus on the greedy ones
● Look at the intermediate results
● Rethink your rule implementation & try alternatives
● LVS: needs hierarchical device recognition layers for

schematic / layout correspondence
– Avoid hierarchy degradation (specifically pre-merge driven)

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

19 / 21

Homework
● What are the input / output formats in different tools?

● Need help from community to enable some features?
– YES preferably in the form of test cases, benchmarks, user stories and problem

statements
– YES in form of scripted prototypes
– (under certain conditions) C++ core features

● Is a common (open source) database a solution to some of the
(open) questions?
– In parts it is where no open standards exists
– But after all, a “silver bullet” does not exist – IMHO we get more value if we focus on

making best use of what we have and seamless integration

Input / Output KLayout Others
Layout GDS2 / OASIS etc. GDS2 / OASIS etc.

DRC / LVS decks Ruby language, tool specific,
but follows conventions

Proprietary, copyright
protected

Error DB Tool specific, documented Proprietary
LVS database Tool specific, (documented) Proprietary

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

20 / 21

Vision: The Open Source Growth Cycle

PDKs

Designs
Tools

Provide test cases, regression tests, benchmarks, use cases,
user stories, feedback & defect reports

Enable open and
worldwide collaboration
on development of the

PDK, co-development of
tools and PDK features

Provide standardized
configurations and tool
sets for a large number of
projects and users across
different cultures

Open

Open

Open

IH

P
W

S
20

23
 -

M
at

th
ia

s K
öff

er
le

in

21 / 21

Thank you for Listening!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

