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1 Primitive variable formulation

Formulation of the dimensionless Boussinesq equations for velocity u = (u, w),
buoyancy perturbation 8, and pressure p. Lengths are scaled by L, velocities by U,
and the buoyancy is scaled by gAp/poL, such that the full, dimensional buoyancy

field is expressed as
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where 3b*/dz = gAp/poLy = N is the constant, mean, imposed buoyancy gradient.

The pressure is scaled with the inertial scaling B, = p, UZ.
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where the Reynolds, Prandtl and Richardson numbers are
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Equations (3)-(5) can be time-stepped in Fourier space:
_ _ K2+ k2
0,6t = —ik, i — ik, i — ik, p — xRe Z4,
s _ e ~ kR A
8, = —ik,aw — ik, 0w — ik, p — x; £ + RiyH,
A —~ —~ K24k,
8,6 = —ik, D — ik, — XX 25 _ g

RePr

(2)
(3)
“4)
(5)

(6)

(7)

(®)
9)



The pressure in this system acts as a Lagrange multiplier to maintain the incom-
pressibility condition (2). We can update the pressure by choosing it to maintain
V - u = 0 at each time step. This can be done by splitting the time step; first com-
puting the contribution from all other terms in the momentum equations:
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and then adding on the pressure gradient afterwards
U, = u, — ikAtp. (11)

We choose the pressure as the field ensuring V - u,,,; = 0. Taking the dot product
of (11) with k, we therefore get
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Essentially, we are solving a Poisson equation for the pressure.

This is presented above for a simple Euler scheme, but can easily be imple-
mented in other numerical methods such as Runge-Kutta.

2 Vorticity-streamfunction formulation

Dealing with the pressure can be avoided by taking the curl of the momentum equa-
tion, and considering the flow in terms of its vorticity ¢ and streamfunction :
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Solving a Poisson equation is still required in this formulation to update 3 through
V) =¢. (14)

The evolution equations in this formulation become
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The advantage here is that only three fields (1), ¢, 6) are required in the memory
rather than the four in the primitive variable formulation (u, w, 6, p). However
if one wanted to generalise the stratified problem for 3-D domains, the vorticity-
streamfunction formulation could not be applied.



3 Further considerations

3.1 Ultimate convection

Setting Rig < 0 enforces a mean unstable buoyancy gradient, driving unbounded
convection in the periodic domain. This must be matched by a change in (5) such
that the sign of the vertical velocity on the right hand side changes:
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3.2 Passive scalars

Setting Ri, = 0 and removing the vertical velocity on the right of (5) modifies the
system such that it simulates an unstratified 2-D plane with a passive scalar. Alter-
natively, we can keep the stratification and add a second scalar ep which does not
affect the momentum equation and just satisfies
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where Sc = v/xp, is the Schmidt number for the passive scalar.

3.3 Multiple active scalars

We could also add a second scalar that does affect the momentum equation. Con-
sider for example a density dependent on temperature and salinity through a linear
equation of state:
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We impose constant mean gradients S_z and E, and solve for the periodic perturba-
tions S’ and T’. In this case, we need to define two Richardson numbers
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the signs of which depend on the signs of the mean gradients. In the primitive
variable formulation, the evolution equations would be
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Here Pr = v/xr and Sc = v/xg, and the regime of the system depends on the signs
of Riy and Rig as follows.



« Rir > 0 and Rig < 0: doubly stably stratified;
« Rir < 0and Rig < 0: diffusive convection;
« Rir > 0 and Rig > 0: salt fingering;

« Rir < 0and Rig > 0: doubly convective.

4 Dimensional formulation

In some cases it may be useful to consider the system in its original, dimensional
form. Here we present the equations for a multi-scalar stratified system without
nondimensionalization:

U + (uu)y + (Wu); = —pa/po + Y(uxx + u,2), (24)
w; + (Uw)y + (Ww); = —pz/po + Y(wyx + w,z) + g(aT’ — BS)/py,  (25)
T, 4+ Ty + WT"), = xp(T v x + T'52) — T,w, (26)
S+ (uS)y + (wS"), = x5(S'yx + S',2) — S,w. (27)

Here o is the thermal expansion coefficient, § is the salinity contraction coefficient,
and xr, kg are the molecular diffusivities of heat and salt.



