-
Notifications
You must be signed in to change notification settings - Fork 707
/
Copy pathnanodet_plus.cpp
214 lines (188 loc) · 7.37 KB
/
nanodet_plus.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
//
// Created by DefTruth on 2021/12/27.
//
#include "nanodet_plus.h"
#include "lite/ort/core/ort_utils.h"
#include "lite/utils.h"
using ortcv::NanoDetPlus;
void NanoDetPlus::resize_unscale(const cv::Mat &mat, cv::Mat &mat_rs,
int target_height, int target_width,
NanoPlusScaleParams &scale_params)
{
if (mat.empty()) return;
int img_height = static_cast<int>(mat.rows);
int img_width = static_cast<int>(mat.cols);
mat_rs = cv::Mat(target_height, target_width, CV_8UC3,
cv::Scalar(0, 0, 0));
// scale ratio (new / old) new_shape(h,w)
float w_r = (float) target_width / (float) img_width;
float h_r = (float) target_height / (float) img_height;
float r = std::min(w_r, h_r);
// compute padding
int new_unpad_w = static_cast<int>((float) img_width * r); // floor
int new_unpad_h = static_cast<int>((float) img_height * r); // floor
int pad_w = target_width - new_unpad_w; // >=0
int pad_h = target_height - new_unpad_h; // >=0
int dw = pad_w / 2;
int dh = pad_h / 2;
// resize with unscaling
cv::Mat new_unpad_mat;
// cv::Mat new_unpad_mat = mat.clone(); // may not need clone.
cv::resize(mat, new_unpad_mat, cv::Size(new_unpad_w, new_unpad_h));
new_unpad_mat.copyTo(mat_rs(cv::Rect(dw, dh, new_unpad_w, new_unpad_h)));
// record scale params.
scale_params.ratio = r;
scale_params.dw = dw;
scale_params.dh = dh;
scale_params.flag = true;
}
Ort::Value NanoDetPlus::transform(const cv::Mat &mat_rs)
{
cv::Mat canvas = mat_rs.clone();
// e.g (1,3,320,320) 1xCXHXW
ortcv::utils::transform::normalize_inplace(canvas, mean_vals, scale_vals); // float32
return ortcv::utils::transform::create_tensor(
canvas, input_node_dims, memory_info_handler,
input_values_handler, ortcv::utils::transform::CHW);
}
void NanoDetPlus::detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes,
float score_threshold, float iou_threshold,
unsigned int topk, unsigned int nms_type)
{
if (mat.empty()) return;
auto img_height = static_cast<float>(mat.rows);
auto img_width = static_cast<float>(mat.cols);
const int target_height = (int) input_node_dims.at(2);
const int target_width = (int) input_node_dims.at(3);
// resize & unscale
cv::Mat mat_rs;
NanoPlusScaleParams scale_params;
this->resize_unscale(mat, mat_rs, target_height, target_width, scale_params);
// 1. make input tensor
Ort::Value input_tensor = this->transform(mat_rs);
// 2. inference scores & boxes.
auto output_tensors = ort_session->Run(
Ort::RunOptions{nullptr}, input_node_names.data(),
&input_tensor, 1, output_node_names.data(), num_outputs
);
// 3. rescale & exclude.
std::vector<types::Boxf> bbox_collection;
this->generate_bboxes(scale_params, bbox_collection, output_tensors, score_threshold, img_height, img_width);
// 4. hard|blend|offset nms with topk.
this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type);
}
void NanoDetPlus::generate_points(unsigned int target_height, unsigned int target_width)
{
if (center_points_is_update) return;
// 8, 16, 32, 64
for (auto stride : strides)
{
unsigned int num_grid_w = target_width / stride;
unsigned int num_grid_h = target_height / stride;
for (unsigned int g1 = 0; g1 < num_grid_h; ++g1)
{
for (unsigned int g0 = 0; g0 < num_grid_w; ++g0)
{
float grid0 = (float) g0;
float grid1 = (float) g1;
#ifdef LITE_WIN32
NanoPlusCenterPoint point;
point.grid0 = grid0;
point.grid1 = grid1;
point.stride = (float) stride;
center_points.push_back(point);
#else
center_points.push_back((NanoPlusCenterPoint) {grid0, grid1, (float) stride});
#endif
}
}
}
center_points_is_update = true;
}
void NanoDetPlus::generate_bboxes(const NanoPlusScaleParams &scale_params,
std::vector<types::Boxf> &bbox_collection,
std::vector<Ort::Value> &output_tensors,
float score_threshold,
float img_height,
float img_width)
{
Ort::Value &output_pred = output_tensors.at(0); // e.g [1,2125,112]
auto input_height = static_cast<unsigned int>(input_node_dims.at(2)); // e.g 320
auto input_width = static_cast<unsigned int>(input_node_dims.at(3)); // e.g 320
this->generate_points(input_height, input_width);
auto output_pred_dims = output_pred.GetTypeInfo().GetTensorTypeAndShapeInfo().GetShape();
const unsigned int num_classes = 80;
const unsigned int num_cls_reg = output_pred_dims.at(2); // 112
const unsigned int reg_max = (num_cls_reg - num_classes) / 4; // e.g 8=7+1
const unsigned int num_points = center_points.size();
const float *output_pred_ptr = output_pred.GetTensorMutableData<float>();
float ratio = scale_params.ratio;
int dw = scale_params.dw;
int dh = scale_params.dh;
unsigned int count = 0;
bbox_collection.clear();
for (unsigned int i = 0; i < num_points; ++i)
{
const float *scores = output_pred_ptr + i * num_cls_reg; // row ptr
float cls_conf = scores[0];
unsigned int label = 0;
for (unsigned int j = 0; j < num_classes; ++j)
{
float tmp_conf = scores[j];
if (tmp_conf > cls_conf)
{
cls_conf = tmp_conf;
label = j;
}
} // argmax
if (cls_conf < score_threshold) continue; // filter
auto &point = center_points.at(i);
const float cx = point.grid0; // cx
const float cy = point.grid1; // cy
const float s = point.stride; // stride
const float *logits = output_pred_ptr + i * num_cls_reg + num_classes; // 32|44...
std::vector<float> offsets(4);
for (unsigned int k = 0; k < 4; ++k)
{
float offset = 0.f;
unsigned int max_id;
auto probs = lite::utils::math::softmax<float>(
logits + (k * reg_max), reg_max, max_id);
for (unsigned int l = 0; l < reg_max; ++l)
offset += (float) l * probs[l];
offsets[k] = offset;
}
float l = offsets[0]; // left
float t = offsets[1]; // top
float r = offsets[2]; // right
float b = offsets[3]; // bottom
types::Boxf box;
float x1 = ((cx - l) * s - (float) dw) / ratio; // cx - l x1
float y1 = ((cy - t) * s - (float) dh) / ratio; // cy - t y1
float x2 = ((cx + r) * s - (float) dw) / ratio; // cx + r x2
float y2 = ((cy + b) * s - (float) dh) / ratio; // cy + b y2
box.x1 = std::max(0.f, x1);
box.y1 = std::max(0.f, y1);
box.x2 = std::min(img_width - 1.f, x2);
box.y2 = std::min(img_height - 1.f, y2);
box.score = cls_conf;
box.label = label;
box.label_text = class_names[label];
box.flag = true;
bbox_collection.push_back(box);
count += 1; // limit boxes for nms.
if (count > max_nms)
break;
}
#if LITEORT_DEBUG
std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n";
#endif
}
void NanoDetPlus::nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output,
float iou_threshold, unsigned int topk,
unsigned int nms_type)
{
if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk);
else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk);
else lite::utils::hard_nms(input, output, iou_threshold, topk);
}