-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathtutorial5-regularization.py
55 lines (46 loc) · 1.68 KB
/
tutorial5-regularization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, regularizers
from tensorflow.keras.datasets import cifar10
physical_devices = tf.config.list_physical_devices("GPU")
tf.config.experimental.set_memory_growth(physical_devices[0], True)
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
def my_model():
inputs = keras.Input(shape=(32, 32, 3))
x = layers.Conv2D(32, 3, padding="same", kernel_regularizer=regularizers.l2(0.01),)(
inputs
)
x = layers.BatchNormalization()(x)
x = keras.activations.relu(x)
x = layers.MaxPooling2D()(x)
x = layers.Conv2D(64, 3, padding="same", kernel_regularizer=regularizers.l2(0.01),)(
x
)
x = layers.BatchNormalization()(x)
x = keras.activations.relu(x)
x = layers.MaxPooling2D()(x)
x = layers.Conv2D(
128, 3, padding="same", kernel_regularizer=regularizers.l2(0.01),
)(x)
x = layers.BatchNormalization()(x)
x = keras.activations.relu(x)
x = layers.Flatten()(x)
x = layers.Dense(64, activation="relu", kernel_regularizer=regularizers.l2(0.01),)(
x
)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(10)(x)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
model = my_model()
model.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(lr=3e-4),
metrics=["accuracy"],
)
model.fit(x_train, y_train, batch_size=64, epochs=150, verbose=2)
model.evaluate(x_test, y_test, batch_size=64, verbose=2)