-
Notifications
You must be signed in to change notification settings - Fork 626
/
Copy pathImfHuf.cpp
1058 lines (873 loc) · 27.3 KB
/
ImfHuf.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// SPDX-License-Identifier: BSD-3-Clause
// Copyright (c) Contributors to the OpenEXR Project.
//
//-----------------------------------------------------------------------------
//
// 16-bit Huffman compression and decompression.
//
// The source code in this file is derived from the 8-bit
// Huffman compression and decompression routines written
// by Christian Rouet for his PIZ image file format.
//
//-----------------------------------------------------------------------------
#include "Iex.h"
#include "ImfAutoArray.h"
#include "ImfFastHuf.h"
#include <ImfHuf.h>
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
using namespace std;
using namespace IEX_NAMESPACE;
#include "ImfNamespace.h"
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_ENTER
namespace
{
const int HUF_ENCBITS = 16; // literal (value) bit length
const int HUF_DECBITS = 14; // decoding bit size (>= 8)
const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size
const int HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
const int HUF_DECMASK = HUF_DECSIZE - 1;
struct HufDec
{ // short code long code
//-------------------------------
int len : 8; // code length 0
int lit : 24; // lit p size
int* p; // 0 lits
};
void
invalidNBits ()
{
throw InputExc ("Error in header for Huffman-encoded data "
"(invalid number of bits).");
}
void
tooMuchData ()
{
throw InputExc ("Error in Huffman-encoded data "
"(decoded data are longer than expected).");
}
void
notEnoughData ()
{
throw InputExc ("Error in Huffman-encoded data "
"(decoded data are shorter than expected).");
}
void
invalidCode ()
{
throw InputExc ("Error in Huffman-encoded data "
"(invalid code).");
}
void
invalidTableSize ()
{
throw InputExc ("Error in Huffman-encoded data "
"(invalid code table size).");
}
void
unexpectedEndOfTable ()
{
throw InputExc ("Error in Huffman-encoded data "
"(unexpected end of code table data).");
}
void
tableTooLong ()
{
throw InputExc ("Error in Huffman-encoded data "
"(code table is longer than expected).");
}
void
invalidTableEntry ()
{
throw InputExc ("Error in Huffman-encoded data "
"(invalid code table entry).");
}
inline uint64_t
hufLength (uint64_t code)
{
return code & 63;
}
inline uint64_t
hufCode (uint64_t code)
{
return code >> 6;
}
inline void
outputBits (int nBits, uint64_t bits, uint64_t& c, int& lc, char*& out)
{
c <<= nBits;
lc += nBits;
c |= bits;
while (lc >= 8)
*out++ = (c >> (lc -= 8));
}
inline uint64_t
getBits (int nBits, uint64_t& c, int& lc, const char*& in)
{
while (lc < nBits)
{
c = (c << 8) | *(unsigned char*) (in++);
lc += 8;
}
lc -= nBits;
return (c >> lc) & ((1 << nBits) - 1);
}
//
// ENCODING TABLE BUILDING & (UN)PACKING
//
//
// Build a "canonical" Huffman code table:
// - for each (uncompressed) symbol, hcode contains the length
// of the corresponding code (in the compressed data)
// - canonical codes are computed and stored in hcode
// - the rules for constructing canonical codes are as follows:
// * shorter codes (if filled with zeroes to the right)
// have a numerically higher value than longer codes
// * for codes with the same length, numerical values
// increase with numerical symbol values
// - because the canonical code table can be constructed from
// symbol lengths alone, the code table can be transmitted
// without sending the actual code values
// - see http://www.compressconsult.com/huffman/
//
#if !defined(OPENEXR_IMF_HAVE_LARGE_STACK)
void
hufCanonicalCodeTable (uint64_t* hcode)
#else
void
hufCanonicalCodeTable (uint64_t hcode[HUF_ENCSIZE])
#endif
{
uint64_t n[59];
//
// For each i from 0 through 58, count the
// number of different codes of length i, and
// store the count in n[i].
//
for (int i = 0; i <= 58; ++i)
n[i] = 0;
for (int i = 0; i < HUF_ENCSIZE; ++i)
n[hcode[i]] += 1;
//
// For each i from 58 through 1, compute the
// numerically lowest code with length i, and
// store that code in n[i].
//
uint64_t c = 0;
for (int i = 58; i > 0; --i)
{
uint64_t nc = ((c + n[i]) >> 1);
n[i] = c;
c = nc;
}
//
// hcode[i] contains the length, l, of the
// code for symbol i. Assign the next available
// code of length l to the symbol and store both
// l and the code in hcode[i].
//
for (int i = 0; i < HUF_ENCSIZE; ++i)
{
int l = hcode[i];
if (l > 0) hcode[i] = l | (n[l]++ << 6);
}
}
//
// Compute Huffman codes (based on frq input) and store them in frq:
// - code structure is : [63:lsb - 6:msb] | [5-0: bit length];
// - max code length is 58 bits;
// - codes outside the range [im-iM] have a null length (unused values);
// - original frequencies are destroyed;
// - encoding tables are used by hufEncode() and hufBuildDecTable();
//
// NB: The following code "(*a == *b) && (a > b))" was added to ensure
// elements in the heap with the same value are sorted by index.
// This is to ensure, the STL make_heap()/pop_heap()/push_heap() methods
// produced a resultant sorted heap that is identical across OSes.
//
struct FHeapCompare
{
bool operator() (uint64_t* a, uint64_t* b)
{
return ((*a > *b) || ((*a == *b) && (a > b)));
}
};
void
hufBuildEncTable (
uint64_t* frq, // io: input frequencies [HUF_ENCSIZE], output table
int* im, // o: min frq index
int* iM) // o: max frq index
{
//
// This function assumes that when it is called, array frq
// indicates the frequency of all possible symbols in the data
// that are to be Huffman-encoded. (frq[i] contains the number
// of occurrences of symbol i in the data.)
//
// The loop below does three things:
//
// 1) Finds the minimum and maximum indices that point
// to non-zero entries in frq:
//
// frq[im] != 0, and frq[i] == 0 for all i < im
// frq[iM] != 0, and frq[i] == 0 for all i > iM
//
// 2) Fills array fHeap with pointers to all non-zero
// entries in frq.
//
// 3) Initializes array hlink such that hlink[i] == i
// for all array entries.
//
AutoArray<int, HUF_ENCSIZE> hlink;
AutoArray<uint64_t*, HUF_ENCSIZE> fHeap;
*im = 0;
while (!frq[*im])
(*im)++;
int nf = 0;
for (int i = *im; i < HUF_ENCSIZE; i++)
{
hlink[i] = i;
if (frq[i])
{
fHeap[nf] = &frq[i];
nf++;
*iM = i;
}
}
//
// Add a pseudo-symbol, with a frequency count of 1, to frq;
// adjust the fHeap and hlink array accordingly. Function
// hufEncode() uses the pseudo-symbol for run-length encoding.
//
(*iM)++;
frq[*iM] = 1;
fHeap[nf] = &frq[*iM];
nf++;
//
// Build an array, scode, such that scode[i] contains the number
// of bits assigned to symbol i. Conceptually this is done by
// constructing a tree whose leaves are the symbols with non-zero
// frequency:
//
// Make a heap that contains all symbols with a non-zero frequency,
// with the least frequent symbol on top.
//
// Repeat until only one symbol is left on the heap:
//
// Take the two least frequent symbols off the top of the heap.
// Create a new node that has first two nodes as children, and
// whose frequency is the sum of the frequencies of the first
// two nodes. Put the new node back into the heap.
//
// The last node left on the heap is the root of the tree. For each
// leaf node, the distance between the root and the leaf is the length
// of the code for the corresponding symbol.
//
// The loop below doesn't actually build the tree; instead we compute
// the distances of the leaves from the root on the fly. When a new
// node is added to the heap, then that node's descendants are linked
// into a single linear list that starts at the new node, and the code
// lengths of the descendants (that is, their distance from the root
// of the tree) are incremented by one.
//
make_heap (&fHeap[0], &fHeap[nf], FHeapCompare ());
AutoArray<uint64_t, HUF_ENCSIZE> scode;
memset (scode, 0, sizeof (uint64_t) * HUF_ENCSIZE);
while (nf > 1)
{
//
// Find the indices, mm and m, of the two smallest non-zero frq
// values in fHeap, add the smallest frq to the second-smallest
// frq, and remove the smallest frq value from fHeap.
//
int mm = fHeap[0] - frq;
pop_heap (&fHeap[0], &fHeap[nf], FHeapCompare ());
--nf;
int m = fHeap[0] - frq;
pop_heap (&fHeap[0], &fHeap[nf], FHeapCompare ());
frq[m] += frq[mm];
push_heap (&fHeap[0], &fHeap[nf], FHeapCompare ());
//
// The entries in scode are linked into lists with the
// entries in hlink serving as "next" pointers and with
// the end of a list marked by hlink[j] == j.
//
// Traverse the lists that start at scode[m] and scode[mm].
// For each element visited, increment the length of the
// corresponding code by one bit. (If we visit scode[j]
// during the traversal, then the code for symbol j becomes
// one bit longer.)
//
// Merge the lists that start at scode[m] and scode[mm]
// into a single list that starts at scode[m].
//
//
// Add a bit to all codes in the first list.
//
for (int j = m; true; j = hlink[j])
{
scode[j]++;
assert (scode[j] <= 58);
if (hlink[j] == j)
{
//
// Merge the two lists.
//
hlink[j] = mm;
break;
}
}
//
// Add a bit to all codes in the second list
//
for (int j = mm; true; j = hlink[j])
{
scode[j]++;
assert (scode[j] <= 58);
if (hlink[j] == j) break;
}
}
//
// Build a canonical Huffman code table, replacing the code
// lengths in scode with (code, code length) pairs. Copy the
// code table from scode into frq.
//
hufCanonicalCodeTable (scode);
memcpy (frq, scode, sizeof (uint64_t) * HUF_ENCSIZE);
}
//
// Pack an encoding table:
// - only code lengths, not actual codes, are stored
// - runs of zeroes are compressed as follows:
//
// unpacked packed
// --------------------------------
// 1 zero 0 (6 bits)
// 2 zeroes 59
// 3 zeroes 60
// 4 zeroes 61
// 5 zeroes 62
// n zeroes (6 or more) 63 n-6 (6 + 8 bits)
//
const int SHORT_ZEROCODE_RUN = 59;
const int LONG_ZEROCODE_RUN = 63;
const int SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
const int LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN;
void
hufPackEncTable (
const uint64_t* hcode, // i : encoding table [HUF_ENCSIZE]
int im, // i : min hcode index
int iM, // i : max hcode index
char** pcode) // o: ptr to packed table (updated)
{
char* p = *pcode;
uint64_t c = 0;
int lc = 0;
for (; im <= iM; im++)
{
int l = hufLength (hcode[im]);
if (l == 0)
{
int zerun = 1;
while ((im < iM) && (zerun < LONGEST_LONG_RUN))
{
if (hufLength (hcode[im + 1]) > 0) break;
im++;
zerun++;
}
if (zerun >= 2)
{
if (zerun >= SHORTEST_LONG_RUN)
{
outputBits (6, LONG_ZEROCODE_RUN, c, lc, p);
outputBits (8, zerun - SHORTEST_LONG_RUN, c, lc, p);
}
else
{
outputBits (6, SHORT_ZEROCODE_RUN + zerun - 2, c, lc, p);
}
continue;
}
}
outputBits (6, l, c, lc, p);
}
if (lc > 0) *p++ = (unsigned char) (c << (8 - lc));
*pcode = p;
}
//
// Unpack an encoding table packed by hufPackEncTable():
//
void
hufUnpackEncTable (
const char** pcode, // io: ptr to packed table (updated)
int ni, // i : input size (in bytes)
int im, // i : min hcode index
int iM, // i : max hcode index
uint64_t* hcode) // o: encoding table [HUF_ENCSIZE]
{
memset (hcode, 0, sizeof (uint64_t) * HUF_ENCSIZE);
const char* p = *pcode;
uint64_t c = 0;
int lc = 0;
for (; im <= iM; im++)
{
if (p - *pcode > ni) unexpectedEndOfTable ();
uint64_t l = hcode[im] = getBits (6, c, lc, p); // code length
if (l == (uint64_t) LONG_ZEROCODE_RUN)
{
if (p - *pcode > ni) unexpectedEndOfTable ();
int zerun = getBits (8, c, lc, p) + SHORTEST_LONG_RUN;
if (im + zerun > iM + 1) tableTooLong ();
while (zerun--)
hcode[im++] = 0;
im--;
}
else if (l >= (uint64_t) SHORT_ZEROCODE_RUN)
{
int zerun = l - SHORT_ZEROCODE_RUN + 2;
if (im + zerun > iM + 1) tableTooLong ();
while (zerun--)
hcode[im++] = 0;
im--;
}
}
*pcode = const_cast<char*> (p);
hufCanonicalCodeTable (hcode);
}
//
// DECODING TABLE BUILDING
//
//
// Clear a newly allocated decoding table so that it contains only zeroes.
//
void
hufClearDecTable (HufDec* hdecod) // io: (allocated by caller)
// decoding table [HUF_DECSIZE]
{
memset (hdecod, 0, sizeof (HufDec) * HUF_DECSIZE);
}
//
// Build a decoding hash table based on the encoding table hcode:
// - short codes (<= HUF_DECBITS) are resolved with a single table access;
// - long code entry allocations are not optimized, because long codes are
// unfrequent;
// - decoding tables are used by hufDecode();
//
void
hufBuildDecTable (
const uint64_t* hcode, // i : encoding table
int im, // i : min index in hcode
int iM, // i : max index in hcode
HufDec* hdecod) // o: (allocated by caller)
// decoding table [HUF_DECSIZE]
{
//
// Init hashtable & loop on all codes.
// Assumes that hufClearDecTable(hdecod) has already been called.
//
for (; im <= iM; im++)
{
uint64_t c = hufCode (hcode[im]);
int l = hufLength (hcode[im]);
if (c >> l)
{
//
// Error: c is supposed to be an l-bit code,
// but c contains a value that is greater
// than the largest l-bit number.
//
invalidTableEntry ();
}
if (l > HUF_DECBITS)
{
//
// Long code: add a secondary entry
//
HufDec* pl = hdecod + (c >> (l - HUF_DECBITS));
if (pl->len)
{
//
// Error: a short code has already
// been stored in table entry *pl.
//
invalidTableEntry ();
}
pl->lit++;
if (pl->p)
{
int* p = pl->p;
pl->p = new int[pl->lit];
for (int i = 0; i < pl->lit - 1; ++i)
pl->p[i] = p[i];
delete[] p;
}
else { pl->p = new int[1]; }
pl->p[pl->lit - 1] = im;
}
else if (l)
{
//
// Short code: init all primary entries
//
HufDec* pl = hdecod + (c << (HUF_DECBITS - l));
for (uint64_t i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++)
{
if (pl->len || pl->p)
{
//
// Error: a short code or a long code has
// already been stored in table entry *pl.
//
invalidTableEntry ();
}
pl->len = l;
pl->lit = im;
}
}
}
}
//
// Free the long code entries of a decoding table built by hufBuildDecTable()
//
void
hufFreeDecTable (HufDec* hdecod) // io: Decoding table
{
for (int i = 0; i < HUF_DECSIZE; i++)
{
if (hdecod[i].p)
{
delete[] hdecod[i].p;
hdecod[i].p = 0;
}
}
}
//
// ENCODING
//
inline void
outputCode (uint64_t code, uint64_t& c, int& lc, char*& out)
{
outputBits (hufLength (code), hufCode (code), c, lc, out);
}
inline void
sendCode (
uint64_t sCode,
int runCount,
uint64_t runCode,
uint64_t& c,
int& lc,
char*& out)
{
//
// Output a run of runCount instances of the symbol sCount.
// Output the symbols explicitly, or if that is shorter, output
// the sCode symbol once followed by a runCode symbol and runCount
// expressed as an 8-bit number.
//
if (hufLength (sCode) + hufLength (runCode) + 8 <
hufLength (sCode) * runCount)
{
outputCode (sCode, c, lc, out);
outputCode (runCode, c, lc, out);
outputBits (8, runCount, c, lc, out);
}
else
{
while (runCount-- >= 0)
outputCode (sCode, c, lc, out);
}
}
//
// Encode (compress) ni values based on the Huffman encoding table hcode:
//
int hufEncode // return: output size (in bits)
(const uint64_t* hcode, // i : encoding table
const unsigned short* in, // i : uncompressed input buffer
const int ni, // i : input buffer size (in bytes)
int rlc, // i : rl code
char* out) // o: compressed output buffer
{
char* outStart = out;
uint64_t c = 0; // bits not yet written to out
int lc = 0; // number of valid bits in c (LSB)
int s = in[0];
int cs = 0;
//
// Loop on input values
//
for (int i = 1; i < ni; i++)
{
//
// Count same values or send code
//
if (s == in[i] && cs < 255) { cs++; }
else
{
sendCode (hcode[s], cs, hcode[rlc], c, lc, out);
cs = 0;
}
s = in[i];
}
//
// Send remaining code
//
sendCode (hcode[s], cs, hcode[rlc], c, lc, out);
if (lc) *out = (c << (8 - lc)) & 0xff;
return (out - outStart) * 8 + lc;
}
//
// DECODING
//
//
// In order to force the compiler to inline them,
// getChar() and getCode() are implemented as macros
// instead of "inline" functions.
//
#define getChar(c, lc, in) \
{ \
c = (c << 8) | *(unsigned char*) (in++); \
lc += 8; \
}
#define getCode(po, rlc, c, lc, in, out, ob, oe) \
{ \
if (po == rlc) \
{ \
if (lc < 8) getChar (c, lc, in); \
\
lc -= 8; \
\
unsigned char cs = (c >> lc); \
\
if (out + cs > oe) \
tooMuchData (); \
else if (out - 1 < ob) \
notEnoughData (); \
\
unsigned short s = out[-1]; \
\
while (cs-- > 0) \
*out++ = s; \
} \
else if (out < oe) { *out++ = po; } \
else { tooMuchData (); } \
}
//
// Decode (uncompress) ni bits based on encoding & decoding tables:
//
void
hufDecode (
const uint64_t* hcode, // i : encoding table
const HufDec* hdecod, // i : decoding table
const char* in, // i : compressed input buffer
int ni, // i : input size (in bits)
int rlc, // i : run-length code
int no, // i : expected output size (in bytes)
unsigned short* out) // o: uncompressed output buffer
{
uint64_t c = 0;
int lc = 0;
unsigned short* outb = out;
unsigned short* oe = out + no;
const char* ie = in + (ni + 7) / 8; // input byte size
//
// Loop on input bytes
//
while (in < ie)
{
getChar (c, lc, in);
//
// Access decoding table
//
while (lc >= HUF_DECBITS)
{
const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
if (pl.len)
{
//
// Get short code
//
lc -= pl.len;
if (lc < 0)
{
invalidCode (); // code length too long
}
getCode (pl.lit, rlc, c, lc, in, out, outb, oe);
}
else
{
if (!pl.p) invalidCode (); // wrong code
//
// Search long code
//
int j;
for (j = 0; j < pl.lit; j++)
{
int l = hufLength (hcode[pl.p[j]]);
while (lc < l && in < ie) // get more bits
getChar (c, lc, in);
if (lc >= l)
{
if (hufCode (hcode[pl.p[j]]) ==
((c >> (lc - l)) & ((uint64_t (1) << l) - 1)))
{
//
// Found : get long code
//
lc -= l;
getCode (pl.p[j], rlc, c, lc, in, out, outb, oe);
break;
}
}
}
if (j == pl.lit) invalidCode (); // Not found
}
}
}
//
// Get remaining (short) codes
//
int i = (8 - ni) & 7;
c >>= i;
lc -= i;
while (lc > 0)
{
const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
if (pl.len)
{
lc -= pl.len;
if (lc < 0)
{
invalidCode (); // code length too long
}
getCode (pl.lit, rlc, c, lc, in, out, outb, oe);
}
else
{
invalidCode (); // wrong (long) code
}
}
if (out - outb != no) notEnoughData ();
}
#if !defined(OPENEXR_IMF_HAVE_LARGE_STACK)
void
countFrequencies (uint64_t* freq, const unsigned short data[/*n*/], int n)
#else
void
countFrequencies (
uint64_t freq[HUF_ENCSIZE], const unsigned short data[/*n*/], int n)
#endif
{
for (int i = 0; i < HUF_ENCSIZE; ++i)
freq[i] = 0;
for (int i = 0; i < n; ++i)
++freq[data[i]];
}
void
writeUInt (char buf[4], unsigned int i)
{
unsigned char* b = (unsigned char*) buf;
b[0] = i;
b[1] = i >> 8;
b[2] = i >> 16;
b[3] = i >> 24;
}
unsigned int
readUInt (const char buf[4])
{
const unsigned char* b = (const unsigned char*) buf;
return (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) |
((b[2] << 16) & 0x00ff0000) | ((b[3] << 24) & 0xff000000);
}
} // namespace
//
// EXTERNAL INTERFACE
//
int
hufCompress (const unsigned short raw[], int nRaw, char compressed[])
{
if (nRaw == 0) return 0;
AutoArray<uint64_t, HUF_ENCSIZE> freq;
countFrequencies (freq, raw, nRaw);
int im = 0;
int iM = 0;
hufBuildEncTable (freq, &im, &iM);
char* tableStart = compressed + 20;
char* tableEnd = tableStart;
hufPackEncTable (freq, im, iM, &tableEnd);
int tableLength = tableEnd - tableStart;
char* dataStart = tableEnd;
int nBits = hufEncode (freq, raw, nRaw, iM, dataStart);
int dataLength = (nBits + 7) / 8;
writeUInt (compressed, im);
writeUInt (compressed + 4, iM);
writeUInt (compressed + 8, tableLength);
writeUInt (compressed + 12, nBits);
writeUInt (compressed + 16, 0); // room for future extensions
return dataStart + dataLength - compressed;
}
void
hufUncompress (
const char compressed[], int nCompressed, unsigned short raw[], int nRaw)
{
//
// need at least 20 bytes for header
//
if (nCompressed < 20)
{
if (nRaw != 0) notEnoughData ();
return;
}
int im = readUInt (compressed);
int iM = readUInt (compressed + 4);
// int tableLength = readUInt (compressed + 8);
int nBits = readUInt (compressed + 12);
if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE)
invalidTableSize ();