-
Notifications
You must be signed in to change notification settings - Fork 248
/
Copy pathDiophantineEquation.cpp
97 lines (75 loc) · 2.29 KB
/
DiophantineEquation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/************************************************************************************
Solving Diophantine equations in form of a * x + b * y = c
Uses extended Euclid algorithm
(which finds such x, y that a * x + b * y = gcd(a, b))
Based on problem 4188 from informatics.mccme.ru
http://informatics.mccme.ru/moodle/mod/statements/view3.php?chapterid=4188
************************************************************************************/
#include <iostream>
#include <fstream>
#include <cmath>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <cstring>
#include <cassert>
#include <utility>
#include <iomanip>
using namespace std;
long long gcd(long long a, long long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
// Finds such x and y, that a * x + b * y = gcd(a, b)
long long extended_gcd(long long a, long long b, long long &x, long long &y) {
if (b == 0) {
x = 1; y = 0;
return a;
}
long long x1, y1;
long long g = extended_gcd(b, a % b, x1, y1);
x = y1;
y = x1 - (a / b) * y1;
return g;
}
// Solves equation a * x + b * y = c, writes answer to x and y
void solveDiophantine(long long a, long long b, long long c, long long &x, long long &y) {
long long g = extended_gcd(a, b, x, y);
if (c % g != 0) {
puts("Impossible");
exit(0);
}
c /= g;
x = x * c; y = y * c;
}
long long a, b, c;
long long x, y;
long long g;
int main() {
//assert(freopen("input.txt","r",stdin));
//assert(freopen("output.txt","w",stdout));
cin >> a >> b >> c;
// Find any solution
solveDiophantine(a, b, c, x, y);
// In this problem we search for solution with minimum x >= 0
// a * x + b * y = gcd(a, b)
// now for any integer k: a * (x + k * b / g) + b * (y - k * a / g) = gcd(a, b)
g = gcd(a, b);
long long add = b / g;
long long num = 0;
if (add < 0)
num = (long long) floor(1.0 * -x / add);
else
num = (long long) ceil(1.0 * -x / add);
x = x + b / g * num;
y = y - a / g * num;
cout << x << " " << y;
return 0;
}