-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_loader.py
372 lines (276 loc) · 11.5 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import numpy as np
import cv2
from glob import glob
from tqdm import tqdm
import random
from skimage import io
from skimage.segmentation import mark_boundaries
from skimage.transform import SimilarityTransform
from skimage.transform import warp
from skimage import measure
from skimage.transform import rotate, rescale
import variables as var
def to_categorical(y, num_classes=None, dtype='float32'):
y = np.array(y, dtype='int')
input_shape = y.shape
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.ravel()
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
categorical = np.zeros((n, num_classes), dtype=dtype)
categorical[np.arange(n), y] = 1
output_shape = input_shape + (num_classes,)
categorical = np.reshape(categorical, output_shape)
return categorical
class DataLoader():
def __init__(self, ws=512, nb=10000, bs=2):
self.nb = nb
self.bs = bs
self.ws = ws
self.load_data()
self.num_tiles = len(self.rgb_imgs)
self.sliding_index = 0
def generator(self):
for _ in range(self.nb):
batch_rgb = []
batch_gti = []
batch_miss = []
batch_mod = []
batch_inj = []
for _ in range(self.bs):
rgb, gti, miss, mod, inj = self.extract_image()
batch_rgb.append(rgb)
# the ground truth is categorized
#gti = to_categorical(gti != 0, 2)
gti = np.expand_dims(gti, -1)
batch_gti.append(gti)
# the missing instances are categorized
#miss = to_categorical(miss != 0, 2)
miss = np.expand_dims(miss, -1)
batch_miss.append(miss)
# the segmentation is categorized
#mod = to_categorical(mod != 0, 2)
mod = np.expand_dims(mod, -1)
batch_mod.append(mod)
# the injections are categorized
#inj = to_categorical(inj != 0, 2)
inj = np.expand_dims(inj, -1)
batch_inj.append(inj)
batch_rgb = np.asarray(batch_rgb)
batch_gti = np.asarray(batch_gti)
batch_miss = np.asarray(batch_miss)
batch_mod = np.asarray(batch_mod)
batch_inj = np.asarray(batch_inj)
batch_rgb = batch_rgb / 255.0
yield (batch_rgb, batch_gti, batch_miss, batch_mod, batch_inj)
def random_hsv(self, img, value_h=30, value_s=30, value_v=30):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
h = np.int16(h)
s = np.int16(s)
v = np.int16(v)
h += value_h
h[h < 0] = 0
h[h > 255] = 255
s += value_s
s[s < 0] = 0
s[s > 255] = 255
v += value_v
v[v < 0] = 0
v[v > 255] = 255
h = np.uint8(h)
s = np.uint8(s)
v = np.uint8(v)
final_hsv = cv2.merge((h, s, v))
img = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR)
return img
def translate_mask(self, mask, max_t=32):
#mi = np.round(random.gauss(0, 0.2) * max_t)
#mj = np.round(random.gauss(0, 0.2) * max_t)
mi = np.random.randint(-max_t, max_t)
mj = np.random.randint(-max_t, max_t)
tform = SimilarityTransform(translation=(mi, mj))
mask = warp(mask, tform, preserve_range=True)
mask = np.uint8(mask!=0)
return mask
def globalFixedTranslation(self, mask, max_t=16):
mi = max_t / np.sqrt(2)
mj = max_t / np.sqrt(2)
tform = SimilarityTransform(translation=(mi, mj))
mask = warp(mask, tform, preserve_range=True)
mask = np.uint8(mask!=0)
return mask
def rotate_mask(self, mask, max_a=30):
angle = np.round(random.gauss(0, 0.2) * max_a)
indices = np.argwhere(mask != 0)
if indices.shape[0] > 0:
ci = int(np.mean(indices[:,0]))
cj = int(np.mean(indices[:,1]))
mask = rotate(mask, angle, False, (cj, ci), preserve_range=True)
return mask
def scale_mask(self, mask, max_s=0.1):
scale = 1 + random.uniform(-max_s, max_s)
indices = np.argwhere(mask != 0)
if indices.shape[0] > 0:
ci = int(np.mean(indices[:,0]))
cj = int(np.mean(indices[:,1]))
k = np.eye(3)
k[2,2] = scale
mask = warp(mask, k)
indices = np.argwhere(mask != 0)
if indices.shape[0] > 0:
di = int(np.mean(indices[:,0]))
dj = int(np.mean(indices[:,1]))
indices[:,0] = indices[:,0] - di + ci
indices[:,1] = indices[:,1] - dj + cj
mask = mask * 0
mask[indices[:,0], indices[:,1]] = 1
mask = np.uint8(mask != 0)
return mask
#def misalign(self, gti_, p_glob_trs=1.1, p_trs=0.9, p_rot=0.9, p_sca=0.0):
def misalign(self, gti_, p_glob_trs=0.75, p_trs=0.9, p_rot=0.9, p_sca=0.0):
gti = np.copy(gti_)
if random.uniform(0,1) < p_glob_trs:
gti = self.translate_mask(gti, max_t=16)
#gti = self.globalFixedTranslation(gti, max_t=16)
conn = np.uint16(measure.label(gti, background=0))
n_conn = np.amax(conn)
missalignment = np.copy(gti)
for ins in range(1, n_conn+1):
ins_mask = conn == ins
is_overlapped = True
while is_overlapped:
mod_mask = np.copy(ins_mask)
if random.uniform(0,1) < p_trs:
mod_mask = self.translate_mask(mod_mask, max_t=32)
if random.uniform(0,1) < p_rot:
mod_mask = self.rotate_mask(mod_mask)
if random.uniform(0,1) < p_sca:
mod_mask = self.scale_mask(mod_mask)
temp = np.copy(missalignment)
temp[ins_mask!=0] = 0
temp[mod_mask!=0] = 1
new_n_conn = np.amax(np.uint16(measure.label(temp, background=0)))
if new_n_conn == n_conn:
missalignment = temp
is_overlapped = False
return missalignment
def filter_injections(self, inj, mod, p_injection=0.20):
conn = np.uint16(measure.label(inj, background=0))
n_conn = np.amax(conn)
for ins in range(1, n_conn+1):
ins_mask = conn == ins
if np.count_nonzero(mod[ins_mask]) > 0:
inj[ins_mask] = 0 # instance discarded
elif np.random.uniform(0,1) > p_injection:
inj[ins_mask] = 0 # instance discarded
return inj
def filter_instances(self, gti, p_filtering=0.20):
conn = np.uint16(measure.label(gti, background=0))
n_conn = np.amax(conn)
filtered = np.zeros(gti.shape)
for ins in range(1, n_conn+1):
if np.random.uniform(0,1) < p_filtering:
gti[conn == ins] = 0
filtered[conn == ins] = 1
return gti, filtered
def extract_image(self, glob_t=16, p_t=0.75):
rand_injected = random.randint(0, self.num_tiles-1)
if self.sliding_index < self.num_tiles:
rand_t = self.sliding_index
self.sliding_index = self.sliding_index + 1
else:
rand_t = 0
self.sliding_index = 0
rgb = self.rgb_imgs[rand_t].copy()
gti = self.gti_imgs[rand_t].copy()
inj = self.gti_imgs[rand_injected].copy() # image used for injections
h = rgb.shape[1]
w = rgb.shape[0]
"""
Extract thumbnail and perform some data augmentation
"""
void = True
while void:
rot = random.randint(0,90)
ri = random.randint(0, int(h-self.ws*2))
rj = random.randint(0, int(w-self.ws*2))
win_rgb = rgb[ri:ri+int(self.ws*2), rj:rj+int(self.ws*2)]
win_gti = gti[ri:ri+int(self.ws*2), rj:rj+int(self.ws*2)]
win_rgb = np.uint8(rotate(win_rgb, rot, resize=False, preserve_range=True))
win_gti = np.uint8(rotate(win_gti, rot, resize=False, preserve_range=True))
win_rgb = win_rgb[self.ws//2:-self.ws//2, self.ws//2:-self.ws//2]
win_gti = win_gti[self.ws//2:-self.ws//2, self.ws//2:-self.ws//2]
# Perform some data augmentation
rot = random.randint(0,3)
win_rgb = np.rot90(win_rgb, k=rot)
win_gti = np.rot90(win_gti, k=rot)
if random.randint(0,1) is 1:
win_rgb = np.fliplr(win_rgb)
win_gti = np.fliplr(win_gti)
r_h = random.randint(-20,20)
r_s = random.randint(-20,20)
r_v = random.randint(-20,20)
win_rgb = self.random_hsv(win_rgb, r_h, r_s, r_v)
win_gti = np.uint8(win_gti!=0)
# Create gti and miss masks
win_gti, win_miss = self.filter_instances(win_gti)
win_mod = np.copy(win_gti)
win_mod = self.misalign(win_mod)
win_mod = np.uint8(win_mod!=0)
if np.count_nonzero(win_gti) and np.count_nonzero(win_mod):
void = False
"""
Extract a thumbnail from the injection source image
"""
void = True
while void:
rot = random.randint(0,90)
ri = random.randint(0, int(h-self.ws*2))
rj = random.randint(0, int(w-self.ws*2))
win_inj = inj[ri:ri+int(self.ws*2), rj:rj+int(self.ws*2)]
win_inj = np.uint8(rotate(win_inj, rot, resize=False, preserve_range=True))
win_inj = win_inj[self.ws//2:-self.ws//2, self.ws//2:-self.ws//2]
# Perform some data augmentation
rot = random.randint(0,3)
win_inj = np.rot90(win_inj, k=rot)
if random.randint(0,1) is 1:
win_inj = np.fliplr(win_inj)
win_inj = np.uint8(win_inj!=0)
win_inj = self.misalign(win_inj)
win_inj = np.uint8(win_inj!=0)
if np.count_nonzero(win_inj):
void = False
win_inj = self.filter_injections(win_inj, win_mod)
win_rgb = win_rgb.astype(np.float32)
win_gti = win_gti.astype(np.float32)
win_miss = win_miss.astype(np.float32)
win_mod = win_mod.astype(np.float32)
win_inj = win_inj.astype(np.float32)
return (win_rgb, win_gti, win_miss, win_mod, win_inj)
def load_data(self):
self.rgb_imgs = []
self.gti_imgs = []
self.seg_imgs = []
rgb_files = glob(var.DATASET_RGB)
gti_files = glob(var.DATASET_GTI)
rgb_files.sort()
gti_files.sort()
print("RGB files: %d" % len(rgb_files))
print("GTI files: %d" % len(gti_files))
assert len(rgb_files) == len(gti_files)
combined = list(zip(rgb_files, gti_files))
random.shuffle(combined)
rgb_files[:], gti_files[:] = zip(*combined)
if var.LOAD_FEW_DATA_SAMPLES:
rgb_files = rgb_files[:4]
gti_files = gti_files[:4]
for rgb_name, gti_name in tqdm(zip(rgb_files, gti_files), total=len(rgb_files), desc="Loading dataset into RAM"):
tmp = io.imread(rgb_name)
tmp = tmp.astype(np.uint8)
self.rgb_imgs.append(tmp)
tmp = io.imread(gti_name)
tmp = tmp.astype(np.uint8)
self.gti_imgs.append(tmp)