-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsvm-partial-newton.pl
executable file
·302 lines (239 loc) · 9.7 KB
/
svm-partial-newton.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#!/usr/bin/perl
# SVM example - partial newton solver Chen, Fan, Lin 2006
# Get example dataset with
# wget http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/heart_scale
# (c) 2011 Zeno Gantner
# License: GPL 3 or later
use strict;
use warnings;
use 5.10.1;
use English qw( -no_match_vars );
use Getopt::Long;
use List::Util qw();
use PDL;
use PDL::LinearAlgebra;
use PDL::NiceSlice;
GetOptions(
'help' => \(my $help = 0),
'compute-fit' => \(my $compute_fit = 0),
'epsilon=f' => \(my $epsilon = 0.001),
'training-file=s' => \(my $training_file = ''),
'test-file=s' => \(my $test_file = ''),
'prediction-file=s' => \(my $prediction_file = ''),
'kernel=s' => \(my $kernel = 'rbf'),
'degree=i' => \(my $degree = 2),
'gamma=f' => \(my $gamma = 1),
'c=f' => \(my $c = 1),
#'probabilities' => \(my $probabilities = 0),
) or usage(-1);
usage(0) if $help;
if ($training_file eq '') {
say "Please give --training-file=FILE";
usage(-1);
}
my %kernel = (
'linear' => sub { sum($_[0] * $_[1]) }, # TODO why does inner() not work?
'polynomial' => sub { (1 + sum($_[0] * $_[1])) ** $degree },
'rbf' => sub { exp( (sum(($_[0] - $_[1]) * ($_[0] - $_[1])) / $gamma) ) }, # TODO think about possible speed-ups
);
my $K = $kernel{$kernel};
my ( $instances, $targets ) = convert_to_pdl(read_data($training_file));
say "X $instances";
say "y $targets";
my $num_instances = (dims $instances)[0];
my $num_features = (dims $instances)[1];
# solve optimization problem
my $alpha = solve_partial_newton($instances, $targets);
# prepare prediction function
my $num_support_vectors = sum($alpha != 0);
my $relevant_instances = zeros($num_support_vectors, $num_features);
my $relevant_instances_alpha = zeros($num_support_vectors); # actually: <alpha, y>
my $offset = 0; # TODO
my $pos = 0;
say "alpha $alpha";
say $relevant_instances_alpha;
for (my $i = 0; $i < $num_instances; $i++) {
if ($alpha($i) > 0) {
$relevant_instances($pos) .= $instances($i);
$relevant_instances_alpha($pos) .= $alpha($i) * $targets($i);
$pos++;
}
}
print "ri ";
say $relevant_instances;
print "ri_a ";
say $relevant_instances_alpha;
my $predict = sub {
my ($x) = @_;
my $score = $offset;
for (my $i = 0; $i < $num_support_vectors; $i++) {
$score += $relevant_instances_alpha($i) * &$K($relevant_instances($i), $x);
}
return $score <=> 0;
};
my $predict_several = sub {
my ($instances) = @_;
my $num_instances = (dims $instances)[0];
my $predictions = zeros($num_instances);
for (my $i = 0; $i < $num_instances; $i++) {
$predictions($i) .= &$predict($instances($i));
}
return $predictions;
};
# compute fit
if ($compute_fit) {
my $pred = &$predict_several($instances);
my $fit_err = sum(abs($pred - $targets));
$fit_err /= $num_instances;
say "FIT_ERR $fit_err N $num_instances";
}
# test/write out predictions
if ($test_file) {
my ( $test_instances, $test_targets ) = convert_to_pdl(read_data($test_file));
my $test_pred = &$predict_several($test_instances);
if ($prediction_file) {
write_vector($test_pred, $prediction_file);
}
else {
my $num_test_instances = (dims $test_instances)[0];
my $test_err = sum(abs($test_pred - $test_targets));
$test_err /= $num_test_instances;
say "ERR $test_err N $num_test_instances";
}
}
exit 0;
sub bounded_by {
my ($x, $a, $b) = @_;
return $a if $x <= $a;
return $b if $x >= $b;
return $x;
}
sub max {
my ($x, $y) = @_;
return $x if $x > $y;
return $y;
}
sub min {
my ($x, $y) = @_;
return $x if $x < $y;
return $y;
}
# solve dual optimization problem
sub solve_partial_newton {
my ($x, $y) = @_;
my $alpha = zeros($num_instances);
my $f = $y->copy;
my $i = 0;
my $j = 0;
for (my $idx = 0; $idx < $num_instances; $idx++) { # TODO find a more elegant PDL formulation
if ($y($idx) == 1) {
$i = $idx;
last;
}
}
for (my $idx = 0; $idx < $num_instances; $idx++) { # TODO find a more elegant PDL formulation
if ($y($idx) == -1) {
$j = $idx;
last;
}
}
while ($f($i) - $f($j) > $epsilon) {
say 'stopping criterion: ' . abs($f($i) - $f($j));
my $delta_alpha = ($f($i) - $f($j)) / ( &$K($x($i), $x($i)) + &$K($x($j), $x($j)) - 2 * &$K($x($i), $x($j)) );
# TODO cache/memoize kernel evaluation
if ($y($i) * $y($j) == -1) {
$delta_alpha = $y($i) * bounded_by(
$y($i) * $delta_alpha,
- min($alpha($i), $alpha($j)),
$c - max($alpha($i), $alpha($j))
);
}
else {
$delta_alpha = $y($i) * bounded_by(
$y($i) * $delta_alpha,
- min($alpha($i), $c - $alpha($j)),
min($c - $alpha($i), $alpha($j))
);
}
$alpha($i) .= $alpha($i) + $y($i) * $delta_alpha; # TODO in-place modification?
$alpha($j) .= $alpha($j) - $y($j) * $delta_alpha; # TODO in-place modification?
for (my $k = 0; $k < $num_instances; $k++) { # TODO use smarter data structures to access positive class instances
$f($k) .= $f($k) - $delta_alpha * ( &$K($x($k), $x($i)) - &$K($x($k), $x($j)) ); # TODO in-place modification?
next if $y($k) == -1;
# TODO find i
}
my $max_val = 0;
for (my $k = 0; $k < $num_instances; $k++) { # TODO use smarter data structures to access negative class instances
next if $y($k) == +1;
my $val = (($f($i) - $f($k)) ** 2) / ( &$K($x($i), $x($i)) + &$K($x($k), $x($k)) - 2 * &$K($x($i), $x($k)) );
if ($val > $max_val) {
$j = $k;
$max_val = $val;
}
}
}
return $alpha;
}
# convert Perl data structure to piddles
sub convert_to_pdl {
my ($data_ref, $num_features) = @_;
my $instances = zeros scalar @$data_ref, $num_features;
my $targets = zeros scalar @$data_ref; # TODO handle multi-class/multi-label here
for (my $i = 0; $i < scalar @$data_ref; $i++) {
my ($feature_value_ref, $target) = @{ $data_ref->[$i] };
$targets($i) .= $target;
foreach my $id (keys %$feature_value_ref) {
$instances($i, $id) .= $feature_value_ref->{$id};
}
}
return ( $instances, $targets );
}
# read LIBSVM-formatted data from file
sub read_data {
my ($training_file) = @_;
my @labeled_instances = ();
my $num_features = 0;
open my $fh, '<', $training_file;
while (<$fh>) {
my $line = $_;
chomp $line;
my @tokens = split /\s+/, $line;
my $label = shift @tokens;
$label = -1 if $label == 0;
die "Label must be 1/0/-1, but is $label\n" if $label != -1 && $label != 1;
my %feature_value = map { split /:/ } @tokens;
$num_features = List::Util::max(keys %feature_value, $num_features);
push @labeled_instances, [ \%feature_value, $label ];
}
close $fh;
$num_features++; # take care of features starting index 0
return (\@labeled_instances, $num_features); # TODO named return
}
# write row vector to text file, one line per entry
sub write_vector {
my ($vector, $filename) = @_;
open my $fh, '>', $filename;
foreach my $col (0 .. (dims $vector)[0] - 1) {
say $fh $vector->at($col, 0);
}
close $fh;
}
sub usage {
my ($return_code) = @_;
print << "END";
$PROGRAM_NAME
Perl Data Language SVM example: partial newton solver
usage: $PROGRAM_NAME [OPTIONS] [INPUT]
--help display this usage information
--epsilon=NUM set convergence sensitivity to NUM
--compute-fit compute error on training data
--training-file=FILE read training data from FILE
--test-file=FILE evaluate on FILE
--prediction-file=FILE write predictions for instances in the test file to FILE
--kernel=linear|polynomial|rbf
--gamma gamma parameter for the RBF (Gaussian) kernel
--degree=INT degree for the polynomial kernel (>0)
--c=NUM complexity parameter C
END
exit $return_code;
}