-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathmolclr.py
199 lines (153 loc) · 6.73 KB
/
molclr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import shutil
import sys
import torch
import yaml
import numpy as np
from datetime import datetime
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import CosineAnnealingLR
from utils.nt_xent import NTXentLoss
apex_support = False
try:
sys.path.append('./apex')
from apex import amp
apex_support = True
except:
print("Please install apex for mixed precision training from: /~https://github.com/NVIDIA/apex")
apex_support = False
def _save_config_file(model_checkpoints_folder):
if not os.path.exists(model_checkpoints_folder):
os.makedirs(model_checkpoints_folder)
shutil.copy('./config.yaml', os.path.join(model_checkpoints_folder, 'config.yaml'))
class MolCLR(object):
def __init__(self, dataset, config):
self.config = config
self.device = self._get_device()
dir_name = datetime.now().strftime('%b%d_%H-%M-%S')
log_dir = os.path.join('ckpt', dir_name)
self.writer = SummaryWriter(log_dir=log_dir)
self.dataset = dataset
self.nt_xent_criterion = NTXentLoss(self.device, config['batch_size'], **config['loss'])
def _get_device(self):
if torch.cuda.is_available() and self.config['gpu'] != 'cpu':
device = self.config['gpu']
torch.cuda.set_device(device)
else:
device = 'cpu'
print("Running on:", device)
return device
def _step(self, model, xis, xjs, n_iter):
# get the representations and the projections
ris, zis = model(xis) # [N,C]
# get the representations and the projections
rjs, zjs = model(xjs) # [N,C]
# normalize projection feature vectors
zis = F.normalize(zis, dim=1)
zjs = F.normalize(zjs, dim=1)
loss = self.nt_xent_criterion(zis, zjs)
return loss
def train(self):
train_loader, valid_loader = self.dataset.get_data_loaders()
if self.config['model_type'] == 'gin':
from models.ginet_molclr import GINet
model = GINet(**self.config["model"]).to(self.device)
model = self._load_pre_trained_weights(model)
elif self.config['model_type'] == 'gcn':
from models.gcn_molclr import GCN
model = GCN(**self.config["model"]).to(self.device)
model = self._load_pre_trained_weights(model)
else:
raise ValueError('Undefined GNN model.')
print(model)
optimizer = torch.optim.Adam(
model.parameters(), self.config['init_lr'],
weight_decay=eval(self.config['weight_decay'])
)
scheduler = CosineAnnealingLR(
optimizer, T_max=self.config['epochs']-self.config['warm_up'],
eta_min=0, last_epoch=-1
)
if apex_support and self.config['fp16_precision']:
model, optimizer = amp.initialize(
model, optimizer, opt_level='O2', keep_batchnorm_fp32=True
)
model_checkpoints_folder = os.path.join(self.writer.log_dir, 'checkpoints')
# save config file
_save_config_file(model_checkpoints_folder)
n_iter = 0
valid_n_iter = 0
best_valid_loss = np.inf
for epoch_counter in range(self.config['epochs']):
for bn, (xis, xjs) in enumerate(train_loader):
optimizer.zero_grad()
xis = xis.to(self.device)
xjs = xjs.to(self.device)
loss = self._step(model, xis, xjs, n_iter)
if n_iter % self.config['log_every_n_steps'] == 0:
self.writer.add_scalar('train_loss', loss, global_step=n_iter)
self.writer.add_scalar('cosine_lr_decay', scheduler.get_last_lr()[0], global_step=n_iter)
print(epoch_counter, bn, loss.item())
if apex_support and self.config['fp16_precision']:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
n_iter += 1
# validate the model if requested
if epoch_counter % self.config['eval_every_n_epochs'] == 0:
valid_loss = self._validate(model, valid_loader)
print(epoch_counter, bn, valid_loss, '(validation)')
if valid_loss < best_valid_loss:
# save the model weights
best_valid_loss = valid_loss
torch.save(model.state_dict(), os.path.join(model_checkpoints_folder, 'model.pth'))
self.writer.add_scalar('validation_loss', valid_loss, global_step=valid_n_iter)
valid_n_iter += 1
if (epoch_counter+1) % self.config['save_every_n_epochs'] == 0:
torch.save(model.state_dict(), os.path.join(model_checkpoints_folder, 'model_{}.pth'.format(str(epoch_counter))))
# warmup for the first few epochs
if epoch_counter >= self.config['warm_up']:
scheduler.step()
def _load_pre_trained_weights(self, model):
try:
checkpoints_folder = os.path.join('./ckpt', self.config['load_model'], 'checkpoints')
state_dict = torch.load(os.path.join(checkpoints_folder, 'model.pth'))
model.load_state_dict(state_dict)
print("Loaded pre-trained model with success.")
except FileNotFoundError:
print("Pre-trained weights not found. Training from scratch.")
return model
def _validate(self, model, valid_loader):
# validation steps
with torch.no_grad():
model.eval()
valid_loss = 0.0
counter = 0
for (xis, xjs) in valid_loader:
xis = xis.to(self.device)
xjs = xjs.to(self.device)
loss = self._step(model, xis, xjs, counter)
valid_loss += loss.item()
counter += 1
valid_loss /= counter
model.train()
return valid_loss
def main():
config = yaml.load(open("config.yaml", "r"), Loader=yaml.FullLoader)
print(config)
if config['aug'] == 'node':
from dataset.dataset import MoleculeDatasetWrapper
elif config['aug'] == 'subgraph':
from dataset.dataset_subgraph import MoleculeDatasetWrapper
elif config['aug'] == 'mix':
from dataset.dataset_mix import MoleculeDatasetWrapper
else:
raise ValueError('Not defined molecule augmentation!')
dataset = MoleculeDatasetWrapper(config['batch_size'], **config['dataset'])
molclr = MolCLR(dataset, config)
molclr.train()
if __name__ == "__main__":
main()