From 5fd2a9653b73ca24a107a9cb51e9ee8967fe2c6d Mon Sep 17 00:00:00 2001 From: Yuxi Hu Date: Wed, 13 Feb 2019 13:36:28 -0800 Subject: [PATCH] Add pin_device_id option to Gluon DataLoader (#14136) * add pin_device_id option to DataLoader * add unit test to check output context * trigger CI --- python/mxnet/gluon/data/dataloader.py | 37 +++++++++++++++--------- tests/python/unittest/test_gluon_data.py | 24 +++++++++++++++ 2 files changed, 48 insertions(+), 13 deletions(-) diff --git a/python/mxnet/gluon/data/dataloader.py b/python/mxnet/gluon/data/dataloader.py index 9d762745a407..934f2d5954c1 100644 --- a/python/mxnet/gluon/data/dataloader.py +++ b/python/mxnet/gluon/data/dataloader.py @@ -169,14 +169,15 @@ def worker_loop_v1(dataset, key_queue, data_queue, batchify_fn): batch = batchify_fn([dataset[i] for i in samples]) data_queue.put((idx, batch)) -def fetcher_loop_v1(data_queue, data_buffer, pin_memory=False, data_buffer_lock=None): +def fetcher_loop_v1(data_queue, data_buffer, pin_memory=False, + pin_device_id=0, data_buffer_lock=None): """Fetcher loop for fetching data from queue and put in reorder dict.""" while True: idx, batch = data_queue.get() if idx is None: break if pin_memory: - batch = _as_in_context(batch, context.cpu_pinned()) + batch = _as_in_context(batch, context.cpu_pinned(pin_device_id)) else: batch = _as_in_context(batch, context.cpu()) if data_buffer_lock is not None: @@ -188,8 +189,8 @@ def fetcher_loop_v1(data_queue, data_buffer, pin_memory=False, data_buffer_lock= class _MultiWorkerIterV1(object): """Internal multi-worker iterator for DataLoader.""" - def __init__(self, num_workers, dataset, batchify_fn, batch_sampler, pin_memory=False, - worker_fn=worker_loop_v1): + def __init__(self, num_workers, dataset, batchify_fn, batch_sampler, + pin_memory=False, pin_device_id=0, worker_fn=worker_loop_v1): assert num_workers > 0, "_MultiWorkerIter is not for {} workers".format(num_workers) self._num_workers = num_workers self._dataset = dataset @@ -218,7 +219,8 @@ def __init__(self, num_workers, dataset, batchify_fn, batch_sampler, pin_memory= self._fetcher = threading.Thread( target=fetcher_loop_v1, - args=(self._data_queue, self._data_buffer, pin_memory, self._data_buffer_lock)) + args=(self._data_queue, self._data_buffer, pin_memory, + pin_device_id, self._data_buffer_lock)) self._fetcher.daemon = True self._fetcher.start() @@ -323,12 +325,15 @@ def default_batchify_fn(data): If ``True``, the dataloader will copy NDArrays into pinned memory before returning them. Copying from CPU pinned memory to GPU is faster than from normal CPU memory. + pin_device_id : int, default 0 + The device id to use for allocating pinned memory if pin_memory is ``True`` """ def __init__(self, dataset, batch_size=None, shuffle=False, sampler=None, last_batch=None, batch_sampler=None, batchify_fn=None, - num_workers=0, pin_memory=False): + num_workers=0, pin_memory=False, pin_device_id=0): self._dataset = dataset self._pin_memory = pin_memory + self._pin_device_id = pin_device_id if batch_sampler is None: if batch_size is None: @@ -365,13 +370,14 @@ def same_process_iter(): for batch in self._batch_sampler: ret = self._batchify_fn([self._dataset[idx] for idx in batch]) if self._pin_memory: - ret = _as_in_context(ret, context.cpu_pinned()) + ret = _as_in_context(ret, context.cpu_pinned(self._pin_device_id)) yield ret return same_process_iter() # multi-worker return _MultiWorkerIterV1(self._num_workers, self._dataset, - self._batchify_fn, self._batch_sampler, self._pin_memory) + self._batchify_fn, self._batch_sampler, + self._pin_memory, self._pin_device_id) def __len__(self): return len(self._batch_sampler) @@ -403,7 +409,7 @@ def _thread_worker_fn(samples, batchify_fn, dataset): class _MultiWorkerIter(object): """Internal multi-worker iterator for DataLoader.""" def __init__(self, worker_pool, batchify_fn, batch_sampler, pin_memory=False, - worker_fn=_worker_fn, prefetch=0, dataset=None): + pin_device_id=0, worker_fn=_worker_fn, prefetch=0, dataset=None): self._worker_pool = worker_pool self._batchify_fn = batchify_fn self._batch_sampler = batch_sampler @@ -413,6 +419,7 @@ def __init__(self, worker_pool, batchify_fn, batch_sampler, pin_memory=False, self._iter = iter(self._batch_sampler) self._worker_fn = worker_fn self._pin_memory = pin_memory + self._pin_device_id = pin_device_id self._dataset = dataset # pre-fetch for _ in range(prefetch): @@ -442,7 +449,7 @@ def __next__(self): ret = self._data_buffer.pop(self._rcvd_idx) batch = pickle.loads(ret.get()) if self._dataset is None else ret.get() if self._pin_memory: - batch = _as_in_context(batch, context.cpu_pinned()) + batch = _as_in_context(batch, context.cpu_pinned(self._pin_device_id)) batch = batch[0] if len(batch) == 1 else batch self._rcvd_idx += 1 return batch @@ -498,6 +505,8 @@ def default_batchify_fn(data): If ``True``, the dataloader will copy NDArrays into pinned memory before returning them. Copying from CPU pinned memory to GPU is faster than from normal CPU memory. + pin_device_id : int, default 0 + The device id to use for allocating pinned memory if pin_memory is ``True`` prefetch : int, default is `num_workers * 2` The number of prefetching batches only works if `num_workers` > 0. If `prefetch` > 0, it allow worker process to prefetch certain batches before @@ -514,9 +523,11 @@ def default_batchify_fn(data): """ def __init__(self, dataset, batch_size=None, shuffle=False, sampler=None, last_batch=None, batch_sampler=None, batchify_fn=None, - num_workers=0, pin_memory=False, prefetch=None, thread_pool=False): + num_workers=0, pin_memory=False, pin_device_id=0, + prefetch=None, thread_pool=False): self._dataset = dataset self._pin_memory = pin_memory + self._pin_device_id = pin_device_id self._thread_pool = thread_pool if batch_sampler is None: @@ -562,13 +573,13 @@ def same_process_iter(): for batch in self._batch_sampler: ret = self._batchify_fn([self._dataset[idx] for idx in batch]) if self._pin_memory: - ret = _as_in_context(ret, context.cpu_pinned()) + ret = _as_in_context(ret, context.cpu_pinned(self._pin_device_id)) yield ret return same_process_iter() # multi-worker return _MultiWorkerIter(self._worker_pool, self._batchify_fn, self._batch_sampler, - pin_memory=self._pin_memory, + pin_memory=self._pin_memory, pin_device_id=self._pin_device_id, worker_fn=_thread_worker_fn if self._thread_pool else _worker_fn, prefetch=self._prefetch, dataset=self._dataset if self._thread_pool else None) diff --git a/tests/python/unittest/test_gluon_data.py b/tests/python/unittest/test_gluon_data.py index 353a819ddbf6..1939de82eb44 100644 --- a/tests/python/unittest/test_gluon_data.py +++ b/tests/python/unittest/test_gluon_data.py @@ -256,6 +256,30 @@ def test_multi_worker_dataloader_release_pool(): del the_iter del D + +def test_dataloader_context(): + X = np.random.uniform(size=(10, 20)) + dataset = gluon.data.ArrayDataset(X) + default_dev_id = 0 + custom_dev_id = 1 + + # use non-pinned memory + loader1 = gluon.data.DataLoader(dataset, 8) + for _, x in enumerate(loader1): + assert x.context == context.cpu(default_dev_id) + + # use pinned memory with default device id + loader2 = gluon.data.DataLoader(dataset, 8, pin_memory=True) + for _, x in enumerate(loader2): + assert x.context == context.cpu_pinned(default_dev_id) + + # use pinned memory with custom device id + loader3 = gluon.data.DataLoader(dataset, 8, pin_memory=True, + pin_device_id=custom_dev_id) + for _, x in enumerate(loader3): + assert x.context == context.cpu_pinned(custom_dev_id) + + if __name__ == '__main__': import nose nose.runmodule()