-
Notifications
You must be signed in to change notification settings - Fork 273
/
Copy pathgraph.c
239 lines (157 loc) · 5.22 KB
/
graph.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
//
// graph.c
// Algorithms - Graph
//
// Created by YourtionGuo on 08/05/2017.
// Copyright © 2017 Yourtion. All rights reserved.
//
#include <stdlib.h>
#include <string.h>
#include "graph.h"
#include "list.h"
#include "set.h"
#pragma mark - Public
void graph_init(Graph *graph,
int (*match)(const void *key1, const void *key2),
void (*destroy)(void *data))
{
/// 初始化图
graph->vcount = 0;
graph->ecount = 0;
graph->match = match;
graph->destroy = destroy;
/// 初始化邻接表结构
list_init(&graph->adjlists, NULL);
return;
}
void graph_destroy(Graph *graph)
{
AdjList *adjlist;
/// 销毁每个邻接表
while (list_size(&graph->adjlists) > 0) {
if (list_rem_next(&graph->adjlists, NULL, (void **)&adjlist) == 0) {
set_destroy(&adjlist->adjacent);
if (graph->destroy != NULL) graph->destroy(adjlist->vertex);
free(adjlist);
}
}
/// 销毁邻接表结构
list_destroy(&graph->adjlists);
/// 清理图数据结构
memset(graph, 0, sizeof(Graph));
return;
}
int graph_ins_vertex(Graph *graph, const void *data)
{
ListElmt *element;
AdjList *adjlist;
int retval;
/// 不允许插入重复的顶点
for (element = list_head(&graph->adjlists); element != NULL; element = list_next(element)) {
if (graph->match(data, ((AdjList *)list_data(element))->vertex)) return 1;
}
/// 插入顶点
if ((adjlist = (AdjList *)malloc(sizeof(AdjList))) == NULL) return -1;
adjlist->vertex = (void *)data;
set_init(&adjlist->adjacent, graph->match, graph->destroy);
if ((retval = list_ins_next(&graph->adjlists, list_tail(&graph->adjlists), adjlist)) != 0) {
return retval;
}
/// 更新顶点数量
graph->vcount++;
return 0;
}
int graph_ins_edge(Graph *graph, const void *data1, const void *data2)
{
ListElmt *element;
int retval;
/// 不允许插入顶点不在图中的边
for (element = list_head(&graph->adjlists); element != NULL; element = list_next(element)) {
if (graph->match(data2, ((AdjList *)list_data(element))->vertex)) break;
}
if (element == NULL) return -1;
for (element = list_head(&graph->adjlists); element != NULL; element = list_next(element)) {
if (graph->match(data1, ((AdjList *)list_data(element))->vertex)) break;
}
if (element == NULL) return -1;
/// 将顶点2插入到顶点1的邻接表
if ((retval = set_insert(&((AdjList *)list_data(element))->adjacent, data2)) != 0) return retval;
/// 更新边数量
graph->ecount++;
return 0;
}
int graph_rem_vertex(Graph *graph, void **data)
{
ListElmt *element, *temp, *prev;
AdjList *adjlist;
int found;
/// 遍历每个邻接表及其包含的顶点
temp = NULL;
prev = NULL;
found = 0;
for (element = list_head(&graph->adjlists); element != NULL; element = list_next(element)) {
/// 不允许删除仍存在于邻接表的顶点
if (set_is_member(&((AdjList *)list_data(element))->adjacent, *data)) return -1;
/// 保存将被删除顶点的指针
if (graph->match(*data, ((AdjList *)list_data(element))->vertex)) {
temp = element;
found = 1;
}
/// 在顶点删除前保持它的指针
if (!found) prev = element;
}
/// 如果顶点不存在返回 -1
if (!found) return -1;
/// 不允许删除它的邻接表不为空的顶点
if (set_size(&((AdjList *)list_data(temp))->adjacent) > 0) return -1;
/// 删除顶点
if (list_rem_next(&graph->adjlists, prev, (void **)&adjlist) != 0) return -1;
/// 销毁之前生成的数据结构
*data = adjlist->vertex;
free(adjlist);
/// 更新顶点数量
graph->vcount--;
return 0;
}
int graph_rem_edge(Graph *graph, void *data1, void **data2)
{
ListElmt *element;
/// 找到第一个节点的邻接表
for (element = list_head(&graph->adjlists); element != NULL; element = list_next(element)) {
if (graph->match(data1, ((AdjList *)list_data(element))->vertex)) break;
}
if (element == NULL) return -1;
/// 从邻接表中删除存在顶点2的边
if (set_remove(&((AdjList *)list_data(element))->adjacent, data2) != 0) return -1;
/// 更新边的数量
graph->ecount--;
return 0;
}
int graph_adjlist(const Graph *graph, const void *data, AdjList **adjlist) {
ListElmt *element, *prev;
/// 找到包含该顶点的邻接表
prev = NULL;
for (element = list_head(&graph->adjlists); element != NULL; element = list_next(element)) {
if (graph->match(data, ((AdjList *)list_data(element))->vertex)) break;
prev = element;
}
/// 找不到顶点返回 -1
if (element == NULL) return -1;
/// 返回该顶点的邻接表
*adjlist = list_data(element);
return 0;
}
int graph_is_adjacent(const Graph *graph, const void *data1, const void *data2)
{
ListElmt *element, *prev;
/// 找到第一个节点的邻接表
prev = NULL;
for (element = list_head(&graph->adjlists); element != NULL; element = list_next(element)) {
if (graph->match(data1, ((AdjList *)list_data(element))->vertex)) break;
prev = element;
}
/// 找不到顶点返回 0
if (element == NULL) return 0;
/// 判断顶点2是否在顶点1的邻接表中
return set_is_member(&((AdjList *)list_data(element))->adjacent, data2);
}