-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
181 lines (151 loc) · 7.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright (c) 2.2022. Yinyu Nie
# License: MIT
import torch
import wandb
from time import time
import os
from net_utils.utils import CheckpointIO, LossRecorder, AverageMeter
from models.optimizers import load_optimizer, load_scheduler, load_bnm_scheduler
from net_utils.utils import load_device, load_model, load_trainer, load_dataloader
class Train(object):
def __init__(self, cfg):
self.cfg = cfg
self.is_master = cfg.is_master
'''Load save path and checkpoint handler.'''
cfg.info('Data save path: %s' % (os.getcwd()))
cfg.info('Loading checkpoint handler')
self.checkpoint = CheckpointIO(cfg, self.is_master)
'''Load device'''
cfg.info('Loading device settings.')
device = load_device(cfg)
'''Load data'''
cfg.info('Loading dataset.')
train_loader = load_dataloader(cfg, mode='train')
self.dataloaders = {'train': train_loader}
'''Load model'''
cfg.info('Loading model')
self.net = load_model(cfg, device=device)
self.checkpoint.register_modules(net=self.net)
cfg.info(self.net)
'''Load optimizer'''
cfg.info('Loading optimizer.')
self.optimizer = load_optimizer(config=cfg.config, net=self.net)
self.checkpoint.register_modules(optimizer=self.optimizer)
'''Load scheduler'''
cfg.info('Loading optimizer scheduler.')
self.scheduler = load_scheduler(cfg=cfg, optimizer=self.optimizer)
self.checkpoint.register_modules(scheduler=self.scheduler)
'''Check existing checkpoint (resume or finetune)'''
self.checkpoint.parse_checkpoint(device)
'''BN momentum scheduler'''
cfg.info('Loading batchnorm scheduler.')
self.bnm_scheduler = load_bnm_scheduler(cfg=cfg, net=self.net, start_epoch=self.scheduler['generator'].last_epoch)
'''Load sub trainer for a specific method.'''
cfg.info('Loading method trainer.')
self.subtrainer = load_trainer(cfg=cfg, net=self.net, optimizer=self.optimizer, device=device)
'''Output network size'''
self.subtrainer.show_net_n_params()
# put logger where it belongs
if self.is_master and cfg.config.log.if_wandb:
cfg.info('Loading wandb.')
wandb.init(project=cfg.config.method, name=cfg.config.exp_name, config=cfg.config)
# wandb.watch(self.net)
def log_wandb(self, loss, phase):
dict_ = dict()
for key, value in loss.items():
dict_[phase + '/' + key] = value
wandb.log(dict_)
def train_epoch(self, epoch, stage):
'''train and val'''
'''Time meter setup.'''
dataload_timemeter = AverageMeter()
batch_timemeter = AverageMeter()
phase = 'train'
self.cfg.info('-' * 100)
self.cfg.info('Switch phase to %s.' % (phase))
self.cfg.info('-' * 100)
dataloader = self.dataloaders[phase]
batch_size = self.cfg.config[phase].batch_size // self.cfg.config.distributed.num_gpus
loss_recorder = LossRecorder(batch_size)
# set mode
self.subtrainer.set_mode(phase)
if self.cfg.config.distributed.num_gpus > 1:
dataloader.batch_sampler.sampler.set_epoch(epoch)
torch.cuda.empty_cache()
batch_start = time()
for iter, data in enumerate(dataloader):
# measure data loading time
dataload_timemeter.update(time() - batch_start)
loss, extra_output = self.subtrainer.train_step(data, stage, start_deform=self.cfg.config.start_deform)
# visualize intermediate results.
if (iter % self.cfg.config.log.vis_step) == 0:
self.subtrainer.visualize_step(epoch, phase, iter, data)
loss_recorder.update_loss(loss)
'''Display batch info'''
batch_timemeter.update(time() - batch_start)
if (iter % self.cfg.config.log.print_step) == 0:
self.cfg.info('G_LR: {G_lr:s} | {phase:s} | Epoch: [{0}][{1}/{2}] | Loss: {loss:s}\
Batch Time {batch_time:.3f} | Data Time {data_time:.3f}'.format(
epoch, iter + 1, len(dataloader), phase=phase, loss=str(loss),
batch_time=batch_timemeter.avg, data_time=dataload_timemeter.avg,
G_lr=str(self.scheduler['generator'].get_last_lr()[:2])))
if self.is_master and self.cfg.config.log.if_wandb:
self.log_wandb(loss, phase)
batch_start = time()
# synchronize over all processes
loss_recorder.synchronize_between_processes()
'''Display epoch info'''
self.cfg.info('=' * 100)
for loss_name, loss_value in loss_recorder.loss_recorder.items():
self.cfg.info('Currently the last %s loss (%s) is: %f' % (phase, loss_name, loss_value.avg))
self.cfg.info('=' * 100)
return loss_recorder.loss_recorder
def run(self):
'''Start to train'''
self.cfg.info('Start to train.')
# ---------------------------------------------------------------------------------------
start_epoch = self.scheduler['generator'].last_epoch
epochs_network = self.cfg.config.train.epochs
epochs_latents = self.cfg.config.train.epochs_latent
total_epochs = epochs_network + epochs_latents
min_eval_loss = self.checkpoint.get('min_loss')
stage = 'all'
net_types = self.scheduler.keys()
self.cfg.info('Start to train network + latents.')
for epoch in range(start_epoch, total_epochs):
if epoch == epochs_network:
self.cfg.info('Network training finished.')
self.cfg.info('=' * 100)
self.cfg.info('Start to train latent codes.')
stage = 'latent_only'
net_types = ['latent_input']
for net_type, subnet in self.net.items():
if net_type in net_types: continue
for param in subnet.parameters():
param.requires_grad = False
self.cfg.info('-' * 100)
self.cfg.info('Epoch (%d/%s):' % (epoch, total_epochs - 1))
self.subtrainer.show_lr()
epoch_start = time()
eval_loss_recorder = self.train_epoch(epoch, stage)
eval_loss = self.subtrainer.eval_loss_parser(eval_loss_recorder)
for net_type in net_types:
self.scheduler[net_type].step()
self.bnm_scheduler[net_type].step()
self.cfg.info('Epoch (%d/%s) Time elapsed: (%f).' % (epoch, total_epochs - 1, time() - epoch_start))
# save checkpoint
self.checkpoint.register_modules(epoch=epoch, min_loss=eval_loss)
if ((epoch % self.cfg.config.log.save_weight_step) == 0) or (epoch == total_epochs - 1):
self.checkpoint.save('last_{:04d}'.format(epoch))
self.cfg.info('Saved the latest checkpoint.')
if epoch == 0 or eval_loss < min_eval_loss:
self.checkpoint.save('best')
min_eval_loss = eval_loss
self.cfg.info('Saved the best checkpoint.')
self.cfg.info('=' * 100)
for loss_name, loss_value in eval_loss_recorder.items():
self.cfg.info('Currently the best val loss (%s) is: %f' % (loss_name, loss_value.avg))
self.cfg.info('=' * 100)
# ---------------------------------------------------------------------------------------
wandb.finish()
self.cfg.info('Training finished.')