-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
184 lines (172 loc) · 9.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import argparse
import functools
import os
import time
from datetime import timedelta
from paddle.distributed import fleet
import paddle
from paddle import nn
from paddle.io import DataLoader
from paddle.optimizer import Adam
from paddle.optimizer.lr import CosineAnnealingDecay
from sklearn.metrics import f1_score
from visualdl import LogWriter
from utils.reader import PuncDatasetFromErnieTokenizer, collate_fn
from utils.model import ErnieLinear
from utils.sampler import CustomBatchSampler, CustomDistributedBatchSampler
from utils.utils import add_arguments, print_arguments
from utils.logger import setup_logger
logger = setup_logger(__name__)
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('batch_size', int, 32, '训练的批量大小')
add_arg('max_seq_len', int, 200, '训练数据的最大长度')
add_arg('num_workers', int, 8, '读取数据的线程数量')
add_arg('num_epoch', int, 30, '训练的轮数')
add_arg('learning_rate', float, 1.0e-5, '初始学习率的大小')
add_arg('train_data_path', str, 'dataset/train.txt', '训练数据的数据文件路径')
add_arg('dev_data_path', str, 'dataset/dev.txt', '测试数据的数据文件路径')
add_arg('punc_path', str, 'dataset/punc_vocab', '标点符号字典路径')
add_arg('model_path', str, 'models/', '保存检查点的目录')
add_arg('resume_model', str, None, '恢复训练模型文件夹')
add_arg('pretrained_token', str, 'ernie-3.0-medium-zh',
'使用的ERNIE模型权重,具体查看:https://paddlenlp.readthedocs.io/zh/latest/model_zoo/transformers/ERNIE/contents.html#ernie')
args = parser.parse_args()
print_arguments(args)
def train():
paddle.set_device("gpu")
# 获取有多少张显卡训练
nranks = paddle.distributed.get_world_size()
local_rank = paddle.distributed.get_rank()
writer = None
if local_rank == 0:
# 日志记录器
writer = LogWriter(logdir='log')
# 支持多卡训练
if nranks > 1:
# 选择设置分布式策略
strategy = fleet.DistributedStrategy()
fleet.init(is_collective=True, strategy=strategy)
train_dataset = PuncDatasetFromErnieTokenizer(data_path=args.train_data_path,
punc_path=args.punc_path,
pretrained_token=args.pretrained_token,
max_seq_len=args.max_seq_len)
dev_dataset = PuncDatasetFromErnieTokenizer(data_path=args.dev_data_path,
punc_path=args.punc_path,
pretrained_token=args.pretrained_token,
max_seq_len=args.max_seq_len)
# 支持多卡训练
if nranks > 1:
train_batch_sampler = CustomDistributedBatchSampler(train_dataset,
batch_size=args.batch_size,
drop_last=True,
shuffle=True)
else:
train_batch_sampler = CustomBatchSampler(train_dataset,
batch_size=args.batch_size,
drop_last=True,
shuffle=True)
train_loader = DataLoader(train_dataset,
collate_fn=collate_fn,
batch_sampler=train_batch_sampler,
num_workers=args.num_workers)
dev_loader = DataLoader(dev_dataset,
batch_size=args.batch_size,
shuffle=False,
collate_fn=collate_fn,
drop_last=False,
num_workers=args.num_workers)
logger.info('预处理数据集完成!')
# num_classes为字符分类大小
model = ErnieLinear(pretrained_token=args.pretrained_token, num_classes=len(train_dataset.punc2id))
criterion = nn.CrossEntropyLoss()
# 支持多卡训练
if nranks > 1:
model = fleet.distributed_model(model)
scheduler = CosineAnnealingDecay(learning_rate=args.learning_rate, T_max=args.num_epoch)
optimizer = Adam(learning_rate=scheduler,
parameters=model.parameters(),
weight_decay=paddle.regularizer.L2Decay(1.0e-5))
# 支持多卡训练
if nranks > 1:
optimizer = fleet.distributed_optimizer(optimizer)
# 恢复训练
last_epoch = 0
if args.resume_model:
assert os.path.exists(os.path.join(args.resume_model, 'model.pdparams')), "模型参数文件不存在!"
assert os.path.exists(os.path.join(args.resume_model, 'optimizer.pdopt')), "优化方法参数文件不存在!"
model.set_state_dict(paddle.load(os.path.join(args.resume_model, 'model.pdparams')))
opt_state = paddle.load(os.path.join(args.resume_model, 'optimizer.pdopt'))
last_epoch = opt_state['LR_Scheduler']['last_epoch']
optimizer.set_state_dict(opt_state)
best_loss = 1e3
train_step, test_step = 0, 0
train_times = []
sum_batch = len(train_loader) * args.num_epoch
for epoch in range(last_epoch, args.num_epoch):
epoch += 1
start = time.time()
for batch_id, (inputs, labels) in enumerate(train_loader()):
labels = paddle.reshape(labels, shape=[-1])
y, logit = model(inputs)
pred = paddle.argmax(logit, axis=1)
loss = criterion(y, labels)
optimizer.clear_grad()
loss.backward()
optimizer.step()
F1_score = f1_score(labels.numpy().tolist(), pred.numpy().tolist(), average="macro")
train_times.append((time.time() - start) * 1000)
# 多卡训练只使用一个进程打印
if batch_id % 100 == 0:
eta_sec = (sum(train_times) / len(train_times)) * (sum_batch - (epoch - 1) * len(train_loader) - batch_id)
eta_str = str(timedelta(seconds=int(eta_sec / 1000)))
logger.info(
'Train epoch: [{}/{}], batch: [{}/{}], loss: {:.5f}, f1_score: {:.5f}, learning rate: {:>.8f}, eta: {}'.format(
epoch, args.num_epoch, batch_id, len(train_loader), float(loss), F1_score, scheduler.get_lr(), eta_str))
if local_rank == 0:
writer.add_scalar('Train/Loss', float(loss), train_step)
writer.add_scalar('Train/F1_Score', F1_score, train_step)
train_step += 1
start = time.time()
if local_rank == 0:
writer.add_scalar('Train/LearnRate', scheduler.get_lr(), epoch)
scheduler.step()
model.eval()
eval_loss = []
eval_f1_score = []
for batch_id, (inputs, labels) in enumerate(dev_loader()):
labels = paddle.reshape(labels, shape=[-1])
y, logit = model(inputs)
pred = paddle.argmax(logit, axis=1)
loss = criterion(y, labels)
eval_loss.append(float(loss))
F1_score = f1_score(labels.numpy().tolist(), pred.numpy().tolist(), average="macro")
eval_f1_score.append(F1_score)
if batch_id % 100 == 0:
logger.info('Batch: [{}/{}], loss: {:.5f}, f1_score: {:.5f}'.format(
batch_id, len(dev_loader), float(loss), F1_score))
eval_loss1 = sum(eval_loss) / len(eval_loss)
eval_f1_score1 = sum(eval_f1_score) / len(eval_f1_score)
if eval_loss1 < best_loss:
best_loss = eval_loss1
# 保存最优模型
if local_rank == 0:
save_dir = os.path.join(args.model_path, "best_checkpoint")
os.makedirs(save_dir, exist_ok=True)
paddle.save(model.state_dict(), os.path.join(save_dir, 'model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(save_dir, 'optimizer.pdopt'))
logger.info(f'模型保存在:{save_dir}')
logger.info('Avg eval, loss: {:.5f}, f1_score: {:.5f} best loss: {:.5f}'.
format(eval_loss1, eval_f1_score1, best_loss))
model.train()
if local_rank == 0:
writer.add_scalar('Test/Loss', eval_loss1, test_step)
writer.add_scalar('Test/F1_Score', eval_f1_score1, test_step)
save_dir = os.path.join(args.model_path, "checkpoint")
os.makedirs(save_dir, exist_ok=True)
paddle.save(model.state_dict(), os.path.join(save_dir, 'model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(save_dir, 'optimizer.pdopt'))
logger.info(f'模型保存在:{save_dir}')
test_step += 1
if __name__ == "__main__":
train()