-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathutils.py
212 lines (187 loc) · 7.46 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# ========================================
# Author: Xueyou Luo
# Email: xueyou.luo@aidigger.com
# Copyright: Eigen Tech @ 2018
# ========================================
import codecs
import json
import os
import sys
import numpy as np
import tensorflow as tf
def print_out(s, f=None, new_line=True):
"""Similar to print but with support to flush and output to a file."""
if isinstance(s, bytes):
s = s.decode("utf-8")
if f:
f.write(s.encode("utf-8"))
if new_line:
f.write(b"\n")
# stdout
out_s = s.encode("utf-8")
if not isinstance(out_s, str):
out_s = out_s.decode("utf-8")
print(out_s, end="", file=sys.stdout)
if new_line:
sys.stdout.write("\n")
sys.stdout.flush()
def _reverse(input_, seq_lengths, seq_dim, batch_dim):
if seq_lengths is not None:
return tf.reverse_sequence(
input=input_, seq_lengths=seq_lengths,
seq_dim=seq_dim, batch_dim=batch_dim)
else:
return tf.reverse(input_, axis=[seq_dim])
def gelu(input_tensor):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
input_tensor: float Tensor to perform activation.
Returns:
`input_tensor` with the GELU activation applied.
"""
cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0)))
return input_tensor * cdf
def single_rnn_cell(cell_name, num_units, train_phase=True, keep_prob=0.75, weight_keep_drop=0.65, variational_dropout = False):
"""
Get a single rnn cell
"""
cell_name = cell_name.upper()
if cell_name == "GRU":
cell = tf.contrib.rnn.GRUCell(num_units)
elif cell_name == "LSTM":
cell = tf.contrib.rnn.LSTMCell(num_units)
elif cell_name == 'block_lstm'.upper():
cell = tf.contrib.rnn.LSTMBlockCell(num_units)
elif cell_name == 'WEIGHT_LSTM':
from thrid_utils import WeightDropLSTMCell
cell = WeightDropLSTMCell(num_units,weight_keep_drop=weight_keep_drop,mode=tf.estimator.ModeKeys.TRAIN if train_phase and weight_keep_drop<1.0 else tf.estimator.ModeKeys.PREDICT)
elif cell_name == 'LAYERNORM_LSTM':
cell = tf.contrib.rnn.LayerNormBasicLSTMCell(num_units)
else:
cell = tf.contrib.rnn.BasicRNNCell(num_units)
# dropout wrapper
if train_phase:
# TODO: variational_recurrent=True and input_keep_prob < 1 then we need provide input_size
# But because we use different size in different layers, we will got shape in-compatible error
# So I just set input_keep_prob to 1.0 when we use variational dropout to avoid this error for now.
cell = tf.contrib.rnn.DropoutWrapper(
cell=cell,
input_keep_prob=keep_prob if not variational_dropout else 1.0,
output_keep_prob=keep_prob,
variational_recurrent=variational_dropout,
dtype=tf.float32)
return cell
def focal_loss(labels, logits, gamma=2):
epsilon = 1.e-9
y_pred = tf.nn.softmax(logits,dim=-1)
y_pred = y_pred + epsilon # to avoid 0.0 in log
L = -labels*tf.pow((1-y_pred),gamma)*tf.log(y_pred)
L = tf.reduce_sum(L)
batch_size = tf.shape(labels)[0]
return L / tf.to_float(batch_size)
def get_total_param_num(params, threshold = 1):
total_parameters = 0
#iterating over all variables
for variable in params:
local_parameters=1
shape = variable.get_shape() #getting shape of a variable
for i in shape:
local_parameters*=i.value #mutiplying dimension values
if local_parameters >= threshold:
print("variable {0} with parameter number {1}".format(variable, local_parameters))
total_parameters+=local_parameters
print('# total parameter number',total_parameters)
return total_parameters
def cal_f1(label_num,predicted,truth):
results = []
for i in range(label_num):
results.append({"TP": 0, "FP": 0, "FN": 0, "TN": 0})
for i, p in enumerate(predicted):
t = truth[i]
for j in range(label_num):
if p[j] == 1:
if t[j] == 1:
results[j]['TP'] += 1
else:
results[j]['FP'] += 1
else:
if t[j] == 1:
results[j]['FN'] += 1
else:
results[j]['TN'] += 1
precision = [0.0] * label_num
recall = [0.0] * label_num
f1 = [0.0] * label_num
for i in range(label_num):
if results[i]['TP'] == 0:
if results[i]['FP']==0 and results[i]['FN']==0:
precision[i] = 1.0
recall[i] = 1.0
f1[i] = 1.0
else:
precision[i] = 0.0
recall[i] = 0.0
f1[i] = 0.0
else:
precision[i] = results[i]['TP'] / (results[i]['TP'] + results[i]['FP'])
recall[i] = results[i]['TP'] / (results[i]['TP'] + results[i]['FN'])
f1[i] = 2 * precision[i] * recall[i] / (precision[i] + recall[i])
# for i in range(label_num):
# print(i,results[i], precision[i], recall[i], f1[i])
return sum(f1)/label_num, sum(precision)/label_num, sum(recall)/label_num
def load_hparams(out_dir, overidded = None):
hparams_file = os.path.join(out_dir,"hparams")
print("loading hparams from %s" % hparams_file)
hparams_json = json.load(open(hparams_file))
hparams = tf.contrib.training.HParams()
for k,v in hparams_json.items():
hparams.add_hparam(k,v)
if overidded:
for k,v in overidded.items():
if k not in hparams_json:
hparams.add_hparam(k,v)
else:
hparams.set_hparam(k,v)
return hparams
def save_hparams(out_dir, hparams):
"""Save hparams."""
if not os.path.isdir(out_dir):
os.mkdir(out_dir)
hparams_file = os.path.join(out_dir, "hparams")
print(" saving hparams to %s" % hparams_file)
with codecs.getwriter("utf-8")(tf.gfile.GFile(hparams_file, "wb")) as f:
f.write(hparams.to_json())
def get_config_proto(log_device_placement=True, allow_soft_placement=True,
num_intra_threads=0, num_inter_threads=0, per_process_gpu_memory_fraction=0.95, allow_growth=True):
# GPU options:
# https://www.tensorflow.org/versions/r0.10/how_tos/using_gpu/index.html
config_proto = tf.ConfigProto(
log_device_placement=log_device_placement,
allow_soft_placement=allow_soft_placement)
config_proto.gpu_options.allow_growth = allow_growth
config_proto.gpu_options.per_process_gpu_memory_fraction = per_process_gpu_memory_fraction
# CPU threads options
if num_intra_threads:
config_proto.intra_op_parallelism_threads = num_intra_threads
if num_inter_threads:
config_proto.inter_op_parallelism_threads = num_inter_threads
return config_proto
def early_stop(values, no_decrease=3):
if len(values) < 2:
return False
best_index = np.argmin(values)
if values[-1] > values[best_index] and (best_index + no_decrease) <= len(values):
return True
else:
return False
def gl_stop(values, alpha=5):
if len(values) < 2:
return False
best = -1 * min(values)
current = -1 * values[-1]
if 100 * ( 1 - (current / best) ) > alpha:
return True
else:
return False