Skip to content

Latest commit

 

History

History
182 lines (143 loc) · 6.89 KB

file.md

File metadata and controls

182 lines (143 loc) · 6.89 KB

G4F - File API Documentation with Web Download and Enhanced File Support

This document details the enhanced G4F File API, allowing users to upload files, download files from web URLs, and process a wider range of file types for integration with language models.

Key Improvements:

  • Web URL Downloads: Upload a downloads.json file to your bucket containing a list of URLs. The API will download and process these files. Example: [{"url": "https://example.com/document.pdf"}]

  • Expanded File Support: Added support for additional plain text file extensions: .txt, .xml, .json, .js, .har, .sh, .py, .php, .css, .yaml, .sql, .log, .csv, .twig, .md. Binary file support remains for .pdf, .html, .docx, .odt, .epub, .xlsx, and .zip.

  • Server-Sent Events (SSE): SSE are now used to provide asynchronous updates on file download and processing progress. This improves the user experience, particularly for large files and multiple downloads.

API Endpoints:

  • Upload: /v1/files/{bucket_id} (POST)

    • Method: POST
    • Path Parameters: bucket_id (Generated by your own. For example a UUID)
    • Body: Multipart/form-data with files OR a downloads.json file containing URLs.
    • Response: JSON object with bucket_id, url, and a list of uploaded/downloaded filenames.
  • Retrieve: /v1/files/{bucket_id} (GET)

    • Method: GET
    • Path Parameters: bucket_id
    • Query Parameters:
      • delete_files: (Optional, boolean, default true) Delete files after retrieval.
      • refine_chunks_with_spacy: (Optional, boolean, default false) Apply spaCy-based refinement.
    • Response: Streaming response with extracted text, separated by ``` markers. SSE updates are sent if the Accept header includes `text/event-stream`.

Example Usage (Python):

import requests
import uuid
import json

def upload_and_process(files_or_urls, bucket_id=None):
    if bucket_id is None:
        bucket_id = str(uuid.uuid4())
    
    if isinstance(files_or_urls, list): #URLs
        files = {'files': ('downloads.json', json.dumps(files_or_urls), 'application/json')}
    elif isinstance(files_or_urls, dict): #Files
        files = files_or_urls
    else:
        raise ValueError("files_or_urls must be a list of URLs or a dictionary of files")

    upload_response = requests.post(f'http://localhost:1337/v1/files/{bucket_id}', files=files)

    if upload_response.status_code == 200:
        upload_data = upload_response.json()
        print(f"Upload successful. Bucket ID: {upload_data['bucket_id']}")
    else:
        print(f"Upload failed: {upload_response.status_code} - {upload_response.text}")

    response = requests.get(f'http://localhost:1337/v1/files/{bucket_id}', stream=True, headers={'Accept': 'text/event-stream'})
    for line in response.iter_lines():
      if line:
          line = line.decode('utf-8')
          if line.startswith('data:'):
              try:
                  data = json.loads(line[5:]) #remove data: prefix
                  if "action" in data:
                      print(f"SSE Event: {data}")
                  elif "error" in data:
                      print(f"Error: {data['error']['message']}")
                  else:
                      print(f"File data received: {data}") #Assuming it's file content
              except json.JSONDecodeError as e:
                  print(f"Error decoding JSON: {e}")
          else:
              print(f"Unhandled SSE event: {line}")
    response.close()

# Example with URLs
urls = [{"url": "/~https://github.com/xtekky/gpt4free/issues"}]
bucket_id = upload_and_process(urls)

#Example with files
files = {'files': open('document.pdf', 'rb'), 'files': open('data.json', 'rb')}
bucket_id = upload_and_process(files)

Example Usage (JavaScript):

function uuid() {
    return ([1e7]+-1e3+-4e3+-8e3+-1e11).replace(/[018]/g, c =>
      (c ^ crypto.getRandomValues(new Uint8Array(1))[0] & 15 >> c / 4).toString(16)
    );
}

async function upload_files_or_urls(data) {
    let bucket_id = uuid(); // Use a random generated key for your bucket

    let formData = new FormData();
    if (typeof data === "object" && data.constructor === Array) { //URLs
        const blob = new Blob([JSON.stringify(data)], { type: 'application/json' });
        const file = new File([blob], 'downloads.json', { type: 'application/json' }); // Create File object
        formData.append('files', file); // Append as a file
    } else { //Files
        Array.from(data).forEach(file => {
            formData.append('files', file);
        });
    }

    await fetch("/v1/files/" + bucket_id, {
        method: 'POST',
        body: formData
    });

    function connectToSSE(url) {
        const eventSource = new EventSource(url);
        eventSource.onmessage = (event) => {
            const data = JSON.parse(event.data);
            if (data.error) {
                console.error("Error:", data.error.message);
            } else if (data.action === "done") {
                console.log("Files loaded successfully. Bucket ID:", bucket_id);
                // Use bucket_id in your LLM prompt.
                const prompt = `Use files from bucket. ${JSON.stringify({"bucket_id": bucket_id})} to answer this: ...your question...`;
                // ... Send prompt to your language model ...
            } else {
                console.log("SSE Event:", data); // Update UI with progress as needed
            }
        };
        eventSource.onerror = (event) => {
            console.error("SSE Error:", event);
            eventSource.close();
        };
    }

    connectToSSE(`/v1/files/${bucket_id}`); //Retrieve and refine
}

// Example with URLs
const urls = [{"url": "/~https://github.com/xtekky/gpt4free/issues"}];
upload_files_or_urls(urls)

// Example with files (using a file input element)
const fileInput = document.getElementById('fileInput');
fileInput.addEventListener('change', () => {
    upload_files_or_urls(fileInput.files);
});

Integrating with ChatCompletion:

To incorporate file uploads into your client applications, include the tool_calls parameter in your chat completion requests, using the bucket_tool function. The bucket_id is passed as a JSON object within your prompt.

{
  "messages": [
    {
      "role": "user",
      "content": "Answer this question using the files in the specified bucket: ...your question...\n{\"bucket_id\": \"your_actual_bucket_id\"}"
    }
  ],
  "tool_calls": [
    {
      "function": {
        "name": "bucket_tool"
      },
      "type": "function"
    }
  ]
}

Important Considerations:

  • Error Handling: Implement robust error handling in both Python and JavaScript to gracefully manage potential issues during file uploads, downloads, and API interactions.
  • Dependencies: Ensure all required packages are installed (pip install -U g4f[files] for Python).

Return to Home