-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathcosql.py
333 lines (283 loc) · 11.5 KB
/
cosql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import torch
import random
import re
from typing import List, Dict
from datasets.dataset_dict import DatasetDict
from torch.utils.data import Dataset
from torch.utils.data.dataset import T_co
from tqdm import tqdm
from third_party.miscs.bridge_content_encoder import get_database_matches
from copy import deepcopy
"""
This part of seq2seq construction of cosql dataset was partly borrowed from PICARD model.
/~https://github.com/ElementAI/picard
And we followed their configuration of normalization and serialization.
their configuration is as followed:
{
"source_prefix": "",
"schema_serialization_type": "peteshaw",
"schema_serialization_randomized": false,
"schema_serialization_with_db_id": true,
"schema_serialization_with_db_content": true,
"normalize_query": true,
"target_with_db_id": true,
}
"""
def cosql_get_utterances(
utterances: List[str],
prefix: str,
sep: str = " | ",
) -> str:
# "[prefix] [utterance n] || [utterance n-1] | [utterance n-2] | ..."
if len(utterances) > 1:
reversed_utterance_head = (utterance.strip() for utterance in reversed(utterances[:-1]))
serialized_reversed_utterance_head = " || " + sep.join(reversed_utterance_head)
else:
serialized_reversed_utterance_head = ""
return prefix + utterances[-1].strip() + serialized_reversed_utterance_head
def cosql_get_input(
utterances: List[str],
serialized_schema: str,
prefix: str,
sep: str = " | ",
) -> str:
# "[prefix] [utterance n] [serialized schema] || [utterance n-1] | [utterance n-2] | ..."
if len(utterances) > 1:
reversed_utterance_head = (utterance.strip() for utterance in reversed(utterances[:-1]))
serialized_reversed_utterance_head = " || " + sep.join(reversed_utterance_head)
else:
serialized_reversed_utterance_head = ""
return prefix + utterances[-1].strip() + " " + serialized_schema.strip() + serialized_reversed_utterance_head
def cosql_get_target(
query: str,
db_id: str,
normalize_query: bool,
target_with_db_id: bool,
) -> str:
_normalize = normalize if normalize_query else (lambda x: x)
return f"{db_id} | {_normalize(query)}" if target_with_db_id else _normalize(query)
def cosql_add_serialized_schema(
ex: dict, args
) -> dict:
serialized_schema = serialize_schema(
question=" | ".join(ex["utterances"]),
db_path=ex["db_path"],
db_id=ex["db_id"],
db_column_names=ex["db_column_names"],
db_table_names=ex["db_table_names"],
schema_serialization_type="peteshaw",
schema_serialization_randomized=False,
schema_serialization_with_db_id=True,
schema_serialization_with_db_content=args.seq2seq.schema_serialization_with_db_content,
normalize_query=True,
)
return {"serialized_schema": serialized_schema}
def cosql_pre_process_function(batch: dict, args):
prefix = ""
inputs = [
cosql_get_input(utterances=utterances, serialized_schema=serialized_schema, prefix=prefix)
for utterances, serialized_schema in zip(batch["utterances"], batch["serialized_schema"])
]
targets = [
cosql_get_target(
query=query,
db_id=db_id,
normalize_query=True,
target_with_db_id=args.seq2seq.target_with_db_id,
)
for db_id, query in zip(batch["db_id"], batch["query"])
]
return zip(inputs, targets)
def cosql_pre_process_one_function(item: dict, args):
prefix = ""
utterances = cosql_get_utterances(
utterances=item["utterances"],
prefix=prefix,
)
seq_out = cosql_get_target(
query=item["query"],
db_id=item["db_id"],
normalize_query=True,
target_with_db_id=args.seq2seq.target_with_db_id,
)
return utterances, seq_out
def normalize(query: str) -> str:
def comma_fix(s):
# Remove spaces in front of commas
return s.replace(" , ", ", ")
def white_space_fix(s):
# Remove double and triple spaces
return " ".join(s.split())
def lower(s):
# Convert everything except text between (single or double) quotation marks to lower case
return re.sub(
r"\b(?<!['\"])(\w+)(?!['\"])\b", lambda match: match.group(1).lower(), s
)
return comma_fix(white_space_fix(lower(query)))
def serialize_schema(
question: str,
db_path: str,
db_id: str,
db_column_names: Dict[str, str],
db_table_names: List[str],
schema_serialization_type: str = "peteshaw",
schema_serialization_randomized: bool = False,
schema_serialization_with_db_id: bool = True,
schema_serialization_with_db_content: bool = False,
normalize_query: bool = True,
) -> str:
if schema_serialization_type == "verbose":
db_id_str = "Database: {db_id}. "
table_sep = ". "
table_str = "Table: {table}. Columns: {columns}"
column_sep = ", "
column_str_with_values = "{column} ({values})"
column_str_without_values = "{column}"
value_sep = ", "
elif schema_serialization_type == "peteshaw":
# see /~https://github.com/google-research/language/blob/master/language/nqg/tasks/spider/append_schema.py#L42
db_id_str = " | {db_id}"
table_sep = ""
table_str = " | {table} : {columns}"
column_sep = " , "
column_str_with_values = "{column} ( {values} )"
column_str_without_values = "{column}"
value_sep = " , "
else:
raise NotImplementedError
def get_column_str(table_name: str, column_name: str) -> str:
column_name_str = column_name.lower() if normalize_query else column_name
if schema_serialization_with_db_content:
matches = get_database_matches(
question=question,
table_name=table_name,
column_name=column_name,
db_path=(db_path + "/" + db_id + "/" + db_id + ".sqlite"),
)
if matches:
return column_str_with_values.format(
column=column_name_str, values=value_sep.join(matches)
)
else:
return column_str_without_values.format(column=column_name_str)
else:
return column_str_without_values.format(column=column_name_str)
tables = [
table_str.format(
table=table_name.lower() if normalize_query else table_name,
columns=column_sep.join(
map(
lambda y: get_column_str(table_name=table_name, column_name=y[1]),
filter(
lambda y: y[0] == table_id,
zip(
db_column_names["table_id"],
db_column_names["column_name"],
),
),
)
),
)
for table_id, table_name in enumerate(db_table_names)
]
if schema_serialization_randomized:
random.shuffle(tables)
if schema_serialization_with_db_id:
serialized_schema = db_id_str.format(db_id=db_id) + table_sep.join(tables)
else:
serialized_schema = table_sep.join(tables)
return serialized_schema
def _get_schemas(examples: Dataset) -> Dict[str, dict]:
schemas: Dict[str, dict] = dict()
for ex in examples:
if ex["db_id"] not in schemas:
schemas[ex["db_id"]] = {
"db_table_names": ex["db_table_names"],
"db_column_names": ex["db_column_names"],
"db_column_types": ex["db_column_types"],
"db_primary_keys": ex["db_primary_keys"],
"db_foreign_keys": ex["db_foreign_keys"],
}
return schemas
"""
Wrap the raw dataset into the seq2seq one.
And the raw dataset item is formatted as
{
"query": datasets.Value("string"),
"utterances": datasets.features.Sequence(datasets.Value("string")),
"turn_idx": datasets.Value("int32"),
"db_id": datasets.Value("string"),
"db_path": datasets.Value("string"),
"db_table_names": datasets.features.Sequence(datasets.Value("string")),
"db_column_names": datasets.features.Sequence(
{
"table_id": datasets.Value("int32"),
"column_name": datasets.Value("string"),
}
),
"db_column_types": datasets.features.Sequence(datasets.Value("string")),
"db_primary_keys": datasets.features.Sequence({"column_id": datasets.Value("int32")}),
"db_foreign_keys": datasets.features.Sequence(
{
"column_id": datasets.Value("int32"),
"other_column_id": datasets.Value("int32"),
}
),
}
"""
class Constructor(object):
def __init__(self, args):
self.args = args
def to_seq2seq(self, raw_datasets: DatasetDict, cache_root: str):
if not len(raw_datasets) == 2:
raise AssertionError("Train, Dev sections of dataset expected.")
train_dataset = TrainDataset(self.args, raw_datasets["train"], cache_root)
dev_dataset = DevDataset(self.args, raw_datasets["validation"], cache_root)
return train_dataset, dev_dataset
class TrainDataset(Dataset):
def __init__(self, args, raw_datasets, cache_root):
self.args = args
self.raw_datasets = raw_datasets
cache_path = os.path.join(cache_root, 'cosql_train.cache')
if os.path.exists(cache_path) and args.dataset.use_cache:
self.extended_data = torch.load(cache_path)
else:
self.extended_data = []
for raw_data in tqdm(self.raw_datasets):
extend_data = deepcopy(raw_data)
extend_data.update(cosql_add_serialized_schema(extend_data, args))
utterances, seq_out = cosql_pre_process_one_function(extend_data, args=self.args)
extend_data.update({"struct_in": extend_data["serialized_schema"].strip(),
"text_in": utterances,
"seq_out": seq_out})
self.extended_data.append(extend_data)
if args.dataset.use_cache:
torch.save(self.extended_data, cache_path)
def __getitem__(self, index) -> T_co:
return self.extended_data[index]
def __len__(self):
return len(self.extended_data)
class DevDataset(Dataset):
def __init__(self, args, raw_datasets, cache_root):
self.args = args
self.raw_datasets = raw_datasets
cache_path = os.path.join(cache_root, 'cosql_dev.cache')
if os.path.exists(cache_path) and args.dataset.use_cache:
self.extended_data = torch.load(cache_path)
else:
self.extended_data = []
for raw_data in tqdm(self.raw_datasets):
extend_data = deepcopy(raw_data)
extend_data.update(cosql_add_serialized_schema(extend_data, args))
utterances, seq_out = cosql_pre_process_one_function(extend_data, args=self.args)
extend_data.update({"struct_in": extend_data["serialized_schema"].strip(),
"text_in": utterances,
"seq_out": seq_out})
self.extended_data.append(extend_data)
if args.dataset.use_cache:
torch.save(self.extended_data, cache_path)
def __getitem__(self, index) -> T_co:
return self.extended_data[index]
def __len__(self):
return len(self.extended_data)