-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
102 lines (81 loc) · 3.63 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python
# coding: utf-8
import torch
import numpy as np
import os
import random
from dataset import load_raw_data
from trainer import Trainer
import yaml
from easydict import EasyDict as edict
def seed_torch(seed=1):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed) # 为了禁止hash随机化,使得实验可复现
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def parser_args():
# load configs/default_config.yaml
default_config = yaml.load(open('configs/default_config.yaml', 'r'), Loader=yaml.FullLoader)
# load training config
config = yaml.load(open('configs/train_config.yaml'), Loader=yaml.FullLoader)['Train']
# load dataset config
config['Dataset'] = default_config['Dataset'][config['dataset']]
config['Target_Pattern'] = default_config['Target_Pattern'][config['pattern_type']]
config['Model'] = default_config['Model'][config['model_name']]
config['Model']['c_out'] = config['Dataset']['num_of_vertices']
config['Model']['enc_in'] = config['Dataset']['num_of_vertices']
config['Model']['dec_in'] = config['Dataset']['num_of_vertices']
config['Surrogate'] = default_config['Model'][config['surrogate_name']]
config['Surrogate']['c_out'] = config['Dataset']['num_of_vertices']
config['Surrogate']['enc_in'] = config['Dataset']['num_of_vertices']
config['Surrogate']['dec_in'] = config['Dataset']['num_of_vertices']
config = edict(config)
return config
def main(config):
# set gpu
gpuid = config.gpuid
os.environ["CUDA_VISIBLE_DEVICES"] = gpuid
USE_CUDA = torch.cuda.is_available()
DEVICE = torch.device('cuda:0')
print("CUDA:", USE_CUDA, DEVICE)
seed_torch()
data_config = config.Dataset
if not data_config.use_timestamps:
train_mean, train_std, train_data_seq, test_data_seq = load_raw_data(data_config)
train_data_stamps = test_data_stamps = None
else:
train_mean, train_std, train_data_seq, test_data_seq, train_data_stamps, test_data_stamps = load_raw_data(data_config)
# set attacked variables
spatial_poison_num = max(int(round(train_data_seq.shape[1] * config.alpha_s)), 1)
atk_vars = np.arange(train_data_seq.shape[1])
atk_vars = np.random.choice(atk_vars, size=spatial_poison_num, replace=False)
atk_vars = torch.from_numpy(atk_vars).long().to(DEVICE)
print('shape of attacked_variables', atk_vars.shape)
# load target pattern
target_pattern = config.Target_Pattern
target_pattern = torch.tensor(target_pattern).float().to(DEVICE) * train_std
exp_trainer = Trainer(config, atk_vars, target_pattern, train_mean, train_std, train_data_seq, test_data_seq,
train_data_stamps, test_data_stamps, DEVICE)
save_file = f'./checkpoints/attacker_{config.dataset}.pth'
if os.path.exists(save_file):
state = torch.load(save_file)
exp_trainer.load_attacker(state)
print('load attacker from', save_file)
else:
print('=' * 20, ' [ Stage 1 ] ', '=' * 20)
print('start training surrogate model and attacker')
exp_trainer.train()
state = exp_trainer.save_attacker()
if not os.path.exists('./checkpoints'):
os.makedirs('./checkpoints')
torch.save(state, save_file)
print('=' * 20, ' [ Stage 2 ] ', '=' * 20)
print('start evaluating attack performance on a new model')
exp_trainer.test()
if __name__ == "__main__":
config = parser_args()
main(config)