-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path012_Investigate_pd_SGInv_TST2_Wave_v5_small_pertub.R
527 lines (432 loc) · 12.5 KB
/
012_Investigate_pd_SGInv_TST2_Wave_v5_small_pertub.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
#==================
# 23 - 24 Nov. 2023
#==================
#Aim:
# Follow work done in 011_Investigate_pertub_on_wave_v4.R
# Understand the ini value for dlt
# and impact on wave function and p.d. of SIGMA_inv
# Discover:
# need to narrow to compact support of a wave function
# and faster the correlation decay
# Measures:
# modified wave_v4 to wave_v5
# Investigate:
# p.d. of resulting SIGMA_inv using
# TST2_SG_SGInv function with wave_v5
# Conclusion: (24 Nov.)
# much improved numerical stability of SIGMA_inv
# dlt = 0.3, A = 1, p.d NO; pert: 1e-7
# dlt = 0.4, A = 0.9, p.d. NO; pert: 1e-5
# dlt = 0.7, A = 1, p.d. NO; pert: 1e-4
#------
# data
#------
p = 5
hierarchy_data <- data.frame(
node_id = c(1, 2, 3, 3, 4, 4, 5),
par_id = c(NA, 1, c(2, 1), c(2, 3), 4)
)
#------------------------------------
# Location, displacements, distance
#------------------------------------
ds <- 0.1
s <- seq(-1 + ds/2, 1 - ds/2, by = ds)
# displacements between pairs of points
# a vector quantity has magnitude and direction
H <- outer(s, s, FUN = "-")
H <- t(H)
# distance
# a scalar quantity
D_vec <- as.double(c(abs(H))) #[1:400]
# H
# [,1] [,2] [,3] [,4]
# [1,] 0.0 0.1 0.2 0.3
# [,5] [,6] [,7] [,8]
# [1,] 0.4 0.5 0.6 0.7
# [,9] [,10] [,11] [,12]
# [1,] 0.8 0.9 1.0 1.1
# [,13] [,14] [,15] [,16]
# [1,] 1.2 1.3 1.4 1.5
# [,17] [,18] [,19] [,20]
# [1,] 1.6 1.7 1.8 1.9
## so when dlt = 0.5,
# tri-wave function include 16 out of 20 values for s1
# include 17 out of 20 for s2
# include 18 out of 20 for s3
# include 19 out of 20 for s4
# include 20 out of 20 from s5 on wards
# this mean the correlation from s with other locations for
# a given row decays very slowly,
# particularly when A is increasing from 0.5 onwards
# this implies the off-diag part C and R
# in SIGMA_inv might not be contract,
# so p.d. is affected.
#=================
# use smaller dlt
#=================
# if dlt set to realtively small value
# consider the compact support condition is
# /h - dlt/ < 2/dlt/
# if dlt = 0.1, 2/dlt/ = 0.2, /h - 0.1/ < 0.2, very compact
# if dlt = 0.2, 2/dlt/ = 0.4, /h - 0.4/ < 0.8, max h = 1.2, 9 out of 20 preserved
# if dlt = 0.3, 2/dlt/ = 0.6, /h - 0.6/ < 1.2, max h = 1.2, 13 out of 20 preserved
# if dlt = 0.4, 2/dlt/ = 0.8, /h - 0.8/ < 1.6.
#--------------------------------------------------------
# Modified wave function (below are all based on wave_v5)
#--------------------------------------------------------
# with a narrower compact support range
source("Fn_Waves.R")
# wave_v5
# read in conjunction with 010_Visualise_Wave_v5_3D_1D.R
#-----------
# Parameters
#-----------
source("Fn_para_mat_construct.R")
all_pars_lst_5 <- All_paras(p = 5, data = hierarchy_data)
source("Fn_set_ini_vals.R")
A_mat_0.5 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[1]], ini_vals = 0.5)
dlt_mat_0.5 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[2]], ini_vals = 0.5)
sig2_mat_1 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[3]], ini_vals = 1)
kappa_mat_2 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[4]], ini_vals = 2)
#-----------------
# Test on the algo
#-----------------
SG_SG_inv_5_TST2 <- TST2_build_SG_SGInv(p = 5, data = hierarchy_data,
A_mat = A_mat_0.5, dlt_mat = dlt_mat_0.5,
sig2_mat = sig2_mat_1, kappa_mat = kappa_mat_2,
d_vec = D_vec, h = H)
#-------------------
# Test p.d. and symm
#-------------------
Tst_sym_pd(SG_SG_inv_5_TST2$SIGMA) d_vec = D_vec, h = H)
Tst_sym_pd(SG_SG_inv_5_TST2$SIGMA_inv)
# [1] "Symmetric: Yes"
# [1] "p.d.: Yes" ! (compare "Investigate_pertub_on_wave_v4.R")
#-----------------
# More values of A
#-----------------
# Aim:
# want to know p.d. of SIGMA_inv for different A values form 0.5 on wards
for(a in seq(0.5, 1, by = 0.1)){
A_mat_a <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[1]], ini_vals = a)
SG_SG_inv_5 <- TST2_build_SG_SGInv(p = 5, data = hierarchy_data,
A_mat = A_mat_a, dlt_mat = dlt_mat_0.5,
sig2_mat = sig2_mat_1, kappa_mat = kappa_mat_2,
d_vec = D_vec, h = H)
cat("A:", a, "\n")
Tst_sym_pd(SG_SG_inv_5$SIGMA_inv)
}
# A: 0.5
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.6
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.7
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.8
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.9
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#A: 1
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#============
# Conslusion
#============
# when the B function has narrow compact supprt
# and the function value decays faster as /h - dlt/
# gets larger
# this ensures the B function and the off-diag block in
# SIGMA_inv C and R are contract or convergent
# theoretical support norm(C) < 1,
# manifestation faster correlation decay of B function
# or C is highly likely column linearly indepdent, full column rank
# BK1 and SIGMA_inv/BK1 p.d. are guaranteed.
# Now for dlt = 0.5, even A value gets larger beyond 0.5
# the resulting SIGMA_inv are p.d. for most of A values
# except only one A = 0.9
# this is highly likely due to numerical issue
# so try pertub
#---------
# Perturb
#---------
# A = 0.9, dlt = 0.5
# SIGMA_inv is not p.d.
# try perturb and see what's the smallest value to perturb
for (pert in 10^seq(-9, -1, by = 1)){
A_mat_09 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[1]], ini_vals = 0.9)
SG_SG_inv_5 <- TST2_build_SG_SGInv(p = 5, data = hierarchy_data,
A_mat = A_mat_09, dlt_mat = dlt_mat_0.5,
sig2_mat = sig2_mat_1, kappa_mat = kappa_mat_2,
d_vec = D_vec, h = H)
I_pert <- I_spar(size = nrow(SG_SG_inv_5$SIGMA_inv), value = pert)
SG_inv_pert <- SG_SG_inv_5$SIGMA_inv + I_pert
cat("perturb:", pert, "\n")
Tst_sym_pd(SG_inv_pert)
}
# perturb: 1e-09
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#perturb: 1e-08
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#perturb: 1e-07
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#perturb: 1e-06
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#perturb: 1e-05
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#perturb: 1e-04
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#perturb: 0.001
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#perturb: 0.01
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#perturb: 0.1
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
## Conclusion:
# only need to perturb 1e-4, SIGMA_inv can be p.d.
#===================================
# More dlt and A values combination
#===================================
#A_mat_0.5 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[1]], ini_vals = 0.5)
#dlt_mat_0.5 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[2]], ini_vals = 0.5)
sig2_mat_1 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[3]], ini_vals = 1)
kappa_mat_2 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[4]], ini_vals = 2)
for (dlt in seq(0.1, 1, by = 0.2)){
cat("dlt:", dlt, "\n")
dlt_mat_d <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[2]], ini_vals = dlt)
for (a in seq(0.5, 1, by = 0.1)){
cat("A:", a, "\n")
A_mat_a <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[1]], ini_vals = a)
SG_SG_inv_5 <- TST2_build_SG_SGInv(p = 5, data = hierarchy_data,
A_mat = A_mat_a, dlt_mat = dlt_mat_d,
sig2_mat = sig2_mat_1, kappa_mat = kappa_mat_2,
d_vec = D_vec, h = H)
Tst_sym_pd(SG_SG_inv_5$SIGMA_inv)
}
}
# dlt: 0.1
#A: 0.5
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.6
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.7
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.8
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.9
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 1
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#dlt: 0.3
#A: 0.5
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.6
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.7
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.8
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.9
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 1
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#dlt: 0.5
#A: 0.5
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.6
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.7
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.8
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.9
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#A: 1
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#dlt: 0.7
#A: 0.5
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.6
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.7
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.8
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.9
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 1
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#dlt: 0.9
#A: 0.5
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.6
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.7
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.8
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 0.9
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#A: 1
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#-----------
# conclusion
#-----------
# discover:
# 1. dlt = 0.3, A = 1, p.d NO;
# dlt = 0.4, A = 0.9, p.d. NO;
# dlt = 0.7, A = 1, p.d. NO
# 2. indeed due to numerical stability
# as 23 Nov. discover dlt = 0.5, A = 0.9, p.d. NO
# but today(24 Nov.) such combination is p.d YES
#----------------------------------
# perturb 3 above p.d. NO situation
#----------------------------------
# dlt = 0.3, A = 1, p.d NO;
# dlt = 0.4, A = 0.9, p.d. NO;
# dlt = 0.7, A = 1, p.d. NO
#A_mat_0.5 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[1]], ini_vals = 0.5)
#dlt_mat_0.5 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[2]], ini_vals = 0.5)
sig2_mat_1 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[3]], ini_vals = 1)
kappa_mat_2 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[4]], ini_vals = 2)
for (dlt in c(0.3, 0.7)){
cat("dlt", dlt, "\n")
for (pert in 10^seq(-7,-1, by = 1)){
cat("pert:", pert, "\n")
dlt_mat_d <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[2]], ini_vals = dlt)
A_mat_1 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[1]], ini_vals = 1)
SG_SG_inv_5 <- TST2_build_SG_SGInv(p = 5, data = hierarchy_data,
A_mat = A_mat_1, dlt_mat = dlt_mat_d,
sig2_mat = sig2_mat_1, kappa_mat = kappa_mat_2,
d_vec = D_vec, h = H)
I_pert <- I_spar(size = nrow(SG_SG_inv_5$SIGMA_inv), value = pert)
SG_inv_pert <- SG_SG_inv_5$SIGMA_inv + I_pert
Tst_sym_pd(SG_inv_pert)
}
}
# dlt 0.3
#pert: 1e-07
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 1e-06
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 1e-05
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 1e-04
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 0.001
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 0.01
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 0.1
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#dlt 0.7
#pert: 1e-07
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#pert: 1e-06
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#pert: 1e-05
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#pert: 1e-04
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 0.001
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 0.01
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 0.1
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
## conclusion:
# dlt = 0.3, A = 1, pert = 1e-7
# dlt = 0.7, A = 1, pert = 1e-4
# dlt = 0.4, A = 0.9, p.d. NO;
for (pert in 10^seq(-7,-1, by = 1)){
cat("pert:", pert, "\n")
dlt_mat_0.4 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[2]], ini_vals = 0.4)
A_mat_0.9 <- Fn_set_ini_vals(pars_mat = all_pars_lst_5[[1]], ini_vals = 0.9)
SG_SG_inv_5 <- TST2_build_SG_SGInv(p = 5, data = hierarchy_data,
A_mat = A_mat_0.9, dlt_mat = dlt_mat_0.4,
sig2_mat = sig2_mat_1, kappa_mat = kappa_mat_2,
d_vec = D_vec, h = H)
I_pert <- I_spar(size = nrow(SG_SG_inv_5$SIGMA_inv), value = pert)
SG_inv_pert <- SG_SG_inv_5$SIGMA_inv + I_pert
Tst_sym_pd(SG_inv_pert)
}
## conslusion:
# pert 1e-5
# pert: 1e-07
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#pert: 1e-06
#[1] "Symmetric: Yes"
#[1] "p.d.: No"
#pert: 1e-05
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 1e-04
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 0.001
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 0.01
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"
#pert: 0.1
#[1] "Symmetric: Yes"
#[1] "p.d.: Yes"